• Title/Summary/Keyword: reinforced soil

검색결과 745건 처리시간 0.02초

모형시험에 의한 점성토 보강토벽의 거동분석 (Analgesis of Clearly Reinforced Soil Wall Behavior by Model Test)

  • 이용안;이재열;김유성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 토목섬유 학술발표회 논문집
    • /
    • pp.85-94
    • /
    • 1999
  • Reinforced Soil Wall has several merits comparing with conventional retaining wall. The conventional method has the limit of wall height, ununiform settlement of the foundation ground, quality assurance of the embankment body, shortening of construction period, economical construction and so on. Basis of previous mentioned things reinforced soil wall is the substitutional method of conventional retaining wall and its necessity is continuously increasing. The embanking material used in reinforced soil wall is generally limited such as a good quality sandy soil, and in many case constructors have to transfer such a good embanking material from far away to construction site. As a result, they would pressed by time and economy. If poor soils could be used embanking material, for example, clayey soil produced in-situ by cutting and excavation, the economical merit of reinforced soil wall would be increased more and more. Likewise, a lot of study about laboratory experimental behavior of reinforced soil wall using a good quality soil is being performed, but is rare study about clayey soil containing much volume of fine particle relatively in korea. In this study, the authors investigated behavior of the geosynthetic reinforced and unreinforced soil walls using clayey soil as embanking material in view of horizontal movement of walls, bearing capacity and reinforcement stress.

  • PDF

보강 혼합토의 역학적 특성(I) -시멘트 혼합토- (Mechanical Characteristics of Reinforced Soil(I) -Cement Reinforced Soil-)

  • 송창섭;임성윤
    • 한국환경복원기술학회지
    • /
    • 제5권6호
    • /
    • pp.9-13
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with cement. And confirm the reinforcing effects with admixture such as cement. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and cement reinforced soil. In order to determine proper moisture content and mixing ratio, pilot test was carried out for soil and cement reinforced soil. And the mixing ratio of cement admixture was fixed 3%, 6%, 9% and 12% by the weight of dry soil. As the experimental results, the maximum dry unit weight(${\gamma}_{dmax}$) was increased with the mixing ratio and then shown the peak at 10% reinforced soil, but the optimum moisture content(OMC) and the volume change was decreased with the ratio increase. And the compressive strength volume change was decreased with mixing ratio increased.

옹벽 배면토체 적용을 위한 단섬유 보강토의 전단강도 특성 (Shear Strength Characteristics of Short-fiber Reinforced Soil for the Application of Retaining Wall Backfill)

  • 박영곤;차경섭;장병욱
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(II)
    • /
    • pp.73-78
    • /
    • 2003
  • As a fundamental study to develop the retaining wall of new type, short-fibers are mixed with soils and a series of compaction tests and triaxial compression tests for short-fiber reinforced soils are performed. From the results of compaction tests, optimum moisture content is increased and maximum dry unit weight is decreased with fiber mixing ratio. When 60mm fibrillated fiber of 0.2$\%$ mixing ratio is added to SM soil, strength increment of short-fiber reinforced soil is above 1.2 times compared to soil only. Strength increment shows maximum value for composite reinforced soil, namely, soil+short-fiber+planar reinforcement. But in case of mixing with ML soil and short-fiber, the strength of short-fiber reinforced soil is nearly the same as soil only. Internal angle of short-fiber reinforced soil is increased about $2\~3$ degrees and cohesion is also increased above 10kPa compared to soil only. Therefore, it is judged that short-fiber is a good material to strengthen the soil.

  • PDF

보강 혼합토의 역학적 특성(II) -섬유 혼합토- (Mechanical Characteristics of Reinforced Soil(II) -Fiber Reinforced Soil-)

  • 송창섭;임성윤
    • 한국환경복원기술학회지
    • /
    • 제5권6호
    • /
    • pp.37-42
    • /
    • 2002
  • This study has been performed to investigate the physical and mechanical characteristics of compaction, volume change and compressive strength for reinforced soil mixed with polypropylene fiber, and to confirm the reinforcing effects with admixture such as polypropylene fiber. To this end, a series of compaction test and compression test was conducted for clayey soil(CL) and polypropylene fiber reinforced soil. In order to determine proper moisture contents and mixing ratio, pilot test was carried out for natural soil and PFRS(polypropylene fiber reinforced soil). And the mixing ratio of mono-filament fiber and fibrillated polypropylene fiber admixture was 0.1%, 0.3%, 0.5% and 1.0% by the weight of dry soil. From the experimental results, it was found that the optimum moisture contents(OMC) increased with the mixing ratio of fiber, but the maximum dry unit weight and the volume change was decreased with the mixing ratio. It means that the improvement of the workability and the reduction of the weight of embankment was done by the addition of the polypropylene fiber. And, from the compression test results, it was found that the addition of the polypropylene fiber remarkably improved the compressive strength of PFRS. And it was observed in the viewpoint of strength that the fibrillated polypropylene fiber reinforced soil was more effective than the mono-filament polypropylene fiber reinforced soil.

보강혼합토의 압축 크리프 특성 (Compressive Creep Properties of Reinforced Soil Mixture)

  • 이상호;차현주;김철영
    • 한국농공학회지
    • /
    • 제44권6호
    • /
    • pp.115-123
    • /
    • 2002
  • This study was performed to provide basic data for development and construction of reinforced soil wall that mixed with reinforcements such as calcium carbonate, monofilament fiber. In order to determine proper moisture content and mixing ratio by weight of reinforcement, Poisson's ratio and compressive strength tests for sandy soil had been conducted. Model tests for long-term behavior of reinforced soil wall were carried out to investigate the effect of reinforcement during loads and under static loads. The results of creep and model tests for sandy soil compared with clayey soil. Reinforced sandy soil mixed with calcium carbonate and cement showed brittle rupture by shear but that of mixed with monofilament fiber showed ductile rupture due to the tension force of fiber. It was shown that when age increased, creep strain of reinforced soil under sustained load approached constant values.

보강 점성토의 워커빌리티 특성 (Workability Characteristics of Reinforced Clayey Soil)

  • 이상호;김상철;차현주
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2001년도 학술발표회 발표논문집
    • /
    • pp.370-374
    • /
    • 2001
  • This study was performed to find the basic data, as needed on the reinforced clayey soil construction work, by estimating job difficulty and optimum moisture content of the reinforced clayey soil, according to its slump test and workability test. As a result, it has been found that the more increasing reinforced clayey soil's moisture content, the higher its slump value. Its 25% moisture content: the reinforced clayey soil except the fiber reinforced soil was able to work with hand; the fiber reinforced soil with the 0.5% or 1.0% of fiber ratio was poor cohesion because of surplus quantity of fiber. Its moisture content between 30% and 35%: shoveling is somewhat difficult but troweling is possible. This study will be needed to modify and add by another.

  • PDF

보강혼합토분의 물리적 특성 (Physical properties of Reinforced soil Mixture powder)

  • 이상호
    • 한국농공학회지
    • /
    • 제42권5호
    • /
    • pp.125-132
    • /
    • 2000
  • This study was performed to evaluate the physical properties of reinforced soil mixture powder. Soil sample was prepared by passing into the standard sieve of No. 200 and reinforcement materials were calcium carbonate, quicklime and portland cement. Fineness, setting time, and compressive strength test for reinforced soil mixture powder were performed and analyzed to investigate their physical properties. The main results were summarized as follow. The compressive strength of soil mixture powder itself and most reinforced was reinforced according to increasing in the mixture rate of reinforcement and the rate of increase was remarkably higher in the cement reinforced soil moisture powder. It was appeared that the early compressive strength is considering higher in the cement reinforced soil moisture powder with 2% of moisture rate of accelerator.

  • PDF

보강흙벽돌의 일축압축 강도특성분석 (Unconfined Compressive Strength of Reinforced Soil Brick)

  • 장병욱;강상욱;박영곤
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.594-598
    • /
    • 1999
  • To analyze the characteristics of unconfined compressive strength of reinforced soil bricks made of clayey and sandy mixed with cement, lime, staple fiber and their combinatioin , a series of unified comparessive tests was performed. The resutls are summarized as follows ; 1) Reinforcing effect of reinforced clayed soil and that of soil brick of sandy soil mixed with cement and staple fiber is 8 times greater than no reinforced sandy sol. Therefore, the reinforcing effect seems to be greater in sandy soil than in clayey soil . 2) Lime shows a negative reinforcing effect in clayed soil but a little reinforcing effect in sandy soil. 3) It is appeared that strain at failure of soil brick reinforced with staple fiber is greater than that of unreinforced brick regrardless of soil's type.

  • PDF

쏘일시멘트 보강토옹벽 사례 연구 (A Case study on reinforced retaining wall backfilled by soil cement)

  • 이명재;장기수;이진환;백민철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.985-994
    • /
    • 2004
  • The application of the reinforced retaining wall has increased in the last 10 years in Korea. The height of reinforced wall is generally limited to less than 15m. It has been reported that the reinforced wall higher than 10m should have higher strength reinforcement or should reduce the lateral earth pressure of the reinforced wall to secure the stability of the wall. In this study, the reinforced retaining wall was constructed 14m high, backfilled by a mixture of soil and cement and instrumented on the reinforcement elements. The instrumented reinforced wall was monitored during and after construction. Field monitoring result shows that a backfill by a mixture of soil and cement reduced the tensile stress developed on the reinforcing elements and the reinforced wall backfilled by a mixture of soil and cement performed successful.

  • PDF

준설토 재활용을 위한 무보강 및 보강 경량토의 압축거동특성 비교 (Comparison of Compressive Behavior Characteristics between Unreinforced and Reinforced Lightweight Soils for Recycling of Dredged Soils)

  • 김윤태;권용규;김홍주
    • 한국해양공학회지
    • /
    • 제19권6호통권67호
    • /
    • pp.44-49
    • /
    • 2005
  • This paper investigates strength characteristics and stress-strain behaviors of unreinforced and reinforced lightweight soils. Lightweight soil, composed of dredged soil, cement, and air-foam, was reinforced by a waste fishing net, in order to increase its compressive strength. Test specimens were fabricated by various mixing conditions, such as cement content, initial water content, air content, and waste fishing net; then, unconfined compression tests were carried out on these specimens. From the test results, it was shown that reinforced lightweight soil had different behavior after failure, even though it had similar behavior as unreinforced lightweight soil before failure. The test results also showed that stress became constant after peak strength in reinforced lightweight soil, while the stress decreased continuously in unreinforced lightweight soil. It was observed that the strength was increased due to reinforcing effect by the waste fishing net for most cases, except high water content greater than $218\%$. In the case of high water content, a reinforcing effect is negligible, due to slip between waste fishing net and soil particles. In reinforced lightweight soil, secant modulus (E50) was increased, due to the inclusion of waste fishing net.