• 제목/요약/키워드: reinforced high strength concrete

검색결과 1,142건 처리시간 0.026초

반복하중을 받는 고강도 철근콘크리트 보의 전단피로 거동 (Shear-Fatigue Behavior of High-Strength Reinforced Concrete Beams under Repeated Loading)

  • 곽계환
    • 한국농공학회지
    • /
    • 제41권4호
    • /
    • pp.92-103
    • /
    • 1999
  • Recently structural damage has been frequently observed in reinforced concrete brdiges due to repeated loads such as vehicular traffic an due to continual overloads by heavy duty trucks. Therefore, the purpose of this experimental stduy is to investigate the damage mechanism due to fatigue behavior of high-strength reinforced concrete beams under repeated loads. From the test results, the relation of cycle loading to deflection is on the mid-span , the crack growth and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results , high-strength reinforced concrete beams failed to 57 ∼66 percent of the static ultimate strength . Fatigue strength aobut two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

  • PDF

강섬유를 혼입한 고강도 콘크리트 보의 탄소섬유쉬트 보강에 관한 연구 (A Study on Carbon Fiber Sheet Rehabilitation of High Strength Reinforced Concrete Beams Mixed Steel Fibrous)

  • 곽계환;곽경헌;정태영;고성재
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.491-496
    • /
    • 2001
  • In recent years, the research and development about the new material proceed rapidly and actively in the building industry. As building structures become bigger, higher and more specialized, so does the demand for material with higher strength. In the future, we will need to research repair and rehabilitation to make high strength concrete mixed steel fibrous building safe. The carbon fiber reinforced plastic bonding method is widely used in reinforcing the existing concrete structure among the various methods. The repair of initiate loaded reinforced high-strength concrete beams mixed steel fibrous with epoxy bonded Carbon Fiber Sheets(CFS) was investigated experimentally. The CFS thickness and length were varied to assess the peel failure at the curtailment of CFS, The behaviour of the repaired beams was represented by load-longitudinal steel strain relation and failure modes were discussed. The test results indicate that CFS is very effective for strengthening the demand beams and controlling deflections of reinforced high strength concrete beams mixed steel fibrous happen diagonal crack, the increase in the number of CFS layers over two layers didn't effect the increase in the strength of beams.

  • PDF

Complete moment-curvature relationship of reinforced normal- and high-strength concrete beams experiencing complex load history

  • Au, F.T.K.;Bai, B.Z.Z.;Kwan, A.K.H.
    • Computers and Concrete
    • /
    • 제2권4호
    • /
    • pp.309-324
    • /
    • 2005
  • The moment-curvature relationship of reinforced concrete beams made of normal- and high-strength concrete experiencing complex load history is studied using a numerical method that employs the actual stress-strain curves of the constitutive materials and takes into account the stress-path dependence of the concrete and steel reinforcement. The load history considered includes loading, unloading and reloading. From the results obtained, it is found that the complete moment-curvature relationship, which is also path-dependent, is similar to the material stress-strain relationship with stress-path dependence. However, the unloading part of the moment-curvature relationship of the beam section is elastic but not perfectly linear, although the unloading of both concrete and steel is assumed to be linearly elastic. It is also observed that when unloading happens, the variation of neutral axis depth has different trends for under- and over-reinforced sections. Moreover, even when the section is fully unloaded, there are still residual curvature and stress in the section in some circumstances. Various issues related to the post-peak behavior of reinforced concrete beams are also discussed.

하이브리드 강섬유 보강 초고강도 콘크리트 보의 휨강도 (Flexural Strength of Hybrid Steel Fiber-Reinforced Ultra-High Strength Concrete Beams)

  • 양인환;김경철;조창빈
    • 콘크리트학회논문집
    • /
    • 제27권3호
    • /
    • pp.283-290
    • /
    • 2015
  • 이 논문에서는 하이브리드 강섬유로 보강된 콘크리트의 부재의 휨강도를 예측하기 위한 수치해석기법을 제시하였다. 이를 위해 휨을 받는 하이브리드 강섬유 보강 콘크리트 실험과 수치해석연구를 수행하였다. 부피비 1.5%의 하이브리드 강섬유 보강 초고강도 콘크리트의 휨거동 특성 실험을 수행하였다. 강섬유보강 콘크리트의 인장연화특성은 구조적 거동에 매우 중요한 역할을 하며, 하이브리드 강섬유 보강 초고강도 콘크리트의 하중-균열개구변위 실험결과를 반영하여 가상균열모델에 근거한 역해석에 의해 인장연화모델링을 수행하였다. 제안기법에 의한 콘크리트 보의 모멘트-곡률 수치해석결과를 실험결과와 비교하였으며, 수치해석결과와 실험결과는 전반적으로 잘 일치하고 있다. 따라서, 제안기법에 의해 강섬유 보강 초고강도 콘크리트 보의 휨강도를 합리적으로 예측할 수 있다고 판단된다.

Shear strength of reinforced concrete dapped-end beams

  • Lin, Ing-Jaung;Hwang, Shyh-Jiann;Lu, Wen-Yao;Tsai, Jiunn-Tyng
    • Structural Engineering and Mechanics
    • /
    • 제16권3호
    • /
    • pp.275-294
    • /
    • 2003
  • In this study, 24 high-strength concrete dapped-end beams were tested to study the effects of the amount of main dapped-end reinforcement, the nominal shear span-to-depth ratio, and the concrete strength on the shear strength of dapped-end beams. Test results indicate that the shear strength of dapped ends increases with the increase in the amount of main dapped-end reinforcement and the concrete strength. The shear strength of dapped-end beam increases with the decrease of nominal shear span-to-depth ratio. A simplified method for determining the shear strength of reinforced concrete dapped ends is also proposed in this paper. The shear strengths predicted by the proposed method and the approach of PCI Design Handbook are compared with test results. The comparison shows that the proposed method can more accurately predict the shear strength of reinforced concrete dapped-end beams than the approach of PCI Design Handbook.

하이브리드섬유보강 고강도콘크리트의 피로거동에 관한 연구 (A Study on the Fatigue behavior of Hybrid Fiber Reinforced High Strength Concrete)

  • 김남욱;최고봉;김한상;배주성
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제9권1호
    • /
    • pp.127-135
    • /
    • 2005
  • 최근들어 콘크리트 구조물이 대형화, 고층화, 장대화 및 특수화 됨에 따라 고강도콘크리트의 사용이 요구되고 있으나 고강도콘크리트는 일반강도콘크리트 보다 취성적인 파괴거동을 나타내고 있다. 따라서 취성적인 파괴 특성을 개선하고 균열성장 저항성을 증진시키기 위하여 ACI 363 위원회에서는 섬유보강콘크리트의 사용을 추천하고 있다. 한편, 교량 및 콘크리트 포장 등은 공용기간중에 적어도 수백만회 이상의 반복하중을 받고 있어 피로하중이 지배적이나 이에 대한 피로거동 및 피로강도의 규명이 어려운 실정이다. 본 연구에서는 하이브리드섬유보강 고강도콘크리트의 피로거동과 피로강도를 규명하기 위하여 정적 및 피로시험으로부터 구한 반복회수와 중앙처짐과의 관계를 비교분석 하였으며 S-N선도로부터 피로강도식을 제안하였다.

Performance of High Strength Self-Compacting Concrete Beams under Different Modes of Failure

  • Harkouss, Raya Hassan;Hamad, Bilal Salim
    • International Journal of Concrete Structures and Materials
    • /
    • 제9권1호
    • /
    • pp.69-88
    • /
    • 2015
  • Self-consolidating concrete (SCC) is a stable and cohesive high consistency concrete mix with enhanced filling ability properties that reduce the need for mechanical compaction. Limited standards and specifications have been reported in the literature on the structural behavior of reinforced self-compacting concrete elements. The significance of the research presented in this paper stems from the need to investigate the effect of enhanced fluidity of SCC on the structural behavior of high strength self-consolidating reinforced concrete beams. To meet the objectives of this research, twelve reinforced concrete beams were prepared with two different generations of superplasticizers and designed to exhibit flexure, shear, or bond splitting failure. The compared beams were identical except for the type of superplasticizer being used (second generation sulphonated-based superplasticizer or third generation polycarboxylate-based superplasticizer). The outcomes of the experimental work revealed comparable resistance of beam specimens made with self-compacting (SCC) and conventional vibrated concrete (VC). The dissimilarities in the experimental values between the SCC and the control VC beams were not major, leading to the conclusion that the high flowability of SCC has little effect on the flexural, shear and bond strengths of concrete members.

트러스 모델에 의한 고강도 재료가 사용된 철근콘크리트 부재의 전단강도 예측 (Prediction of Shear Strength of Reinforced Concrete Members with High-Strength Materials using Truss Models)

  • 김상우;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.367-370
    • /
    • 2005
  • This study is to propose a truss model which is able to reasonably predict the shear strength of reinforced concrete (RC) members with high-strength materials. The shear strengths of 107 RC test beams with high-strength steel bars reported in the technical literatures were compared to those obtained from proposed model, TATM, and existing truss models. The shear strength of reinforced concrete beams obtained from test was better predicted by TATM than other truss models. Also, the theoretical results by TATM were almost constant regardless of yield strengths and steel ratios of tension and shear reinforcements.

  • PDF

화재로 인해 손상 받은 철근콘크리트 구조물의 콘크리트 부착강도 평가 (Evaluation of Bond Strength of a Fire-Damaged Reinforced Concrete Structure)

  • 심종성;문도영;이정환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.211-213
    • /
    • 2003
  • Evaluation of bond strength of a fire-damaged reinforced concrete structure for determining whether to reuse, reinforced, or abandon the structure is very important. Recently, calculating method for changes in bond strength of rebars is proposed by C. Chiang. The equation is relating the ratio of residual bond strength, R, to temperature, T, and exposure time, t. This study presented and verified a general process for evaluating damage to bond strength of RC structure arising from high temperature.

  • PDF