• Title/Summary/Keyword: reinforced concrete structures (RC)

Search Result 1,029, Processing Time 0.095 seconds

Health monitoring of reinforced concrete slabs subjected to earthquake-type dynamic loading via measurement and analysis of acoustic emission signals

  • Gallego, Antolino;Benavent-Climent, Amadeo;Infantes, Cristobal
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.385-398
    • /
    • 2011
  • This paper discusses the applicability of Acoustic Emission (AE) to assess the damage in reinforced concrete (RC) structures subjected to complex dynamic loadings such as those induced by earthquakes. The AE signals recorded during this type of event can be complicated due to the arbitrary and random nature of seismicity and the fact that the signals are highly contaminated by many spurious sources of noise. This paper demonstrates that by properly filtering the AE signals, a very good correlation can be found between AE and damage on the RC structure. The basic experimental data used for this research are the results of fourteen seismic simulations conducted with a shake table on an RC slab supported on four steel columns. The AE signals were recorded by several low-frequency piezoelectric sensors located on the bottom surface of the slab. The evolution of damage under increasing values of peak acceleration applied to the shake table was monitored in terms of AE and dissipated plastic strain energy. A strong correlation was found between the energy dissipated by the concrete through plastic deformations and the AE energy calculated after properly filtering the signals. For this reason, a procedure is proposed to analyze the AE measured in a RC structure during a seismic event so that it can be used for damage assessment.

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.

Seismic performance of RC-column wrapped with Velcro

  • Kwon, Minho;Seo, Hyunsu;Kim, Jinsup
    • Structural Engineering and Mechanics
    • /
    • v.58 no.2
    • /
    • pp.379-395
    • /
    • 2016
  • A seismic strengthening method using Velcro is proposed to improve the seismic performance of columns in RC frame structures. The proposed method was evaluated experimentally using three fabricated RC specimens. Velcro was wrapped around the columns of the RC-frame specimen to prevent concrete spall falling. The reinforcing performance of the Velcro was determined from comparison of results on seismic performance (i.e., strength, displacement, failure mode, displacement ductility capacity and amount of dissipated energy). As the displacement of the reinforced specimens was increased, the amount of dissipated energy increased drastically, and the displacement-ductility-capacity of the reinforced specimens also increased. The final failure mode of RC frame structure was changed. As a result, it was concluded that the proposed seismic strengthening method using Velcro could be used to increase the displacement ductility of RC columns, and could be used to change the final failure mode of RC-frame structures.

Parametric Studies on the Temperature and Thermal Stresses According to Construction Condition of RC Box Structures (철근콘크리트 박스구조물의 시공변수에 따른 수화온도 및 열응력 특성 비교 연구)

  • 오병환;최성철;이명섭;박해균;주태성;안경철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.47-52
    • /
    • 2002
  • Recently, the underground reinforced concrete(RC) box structures have been increasingly built in Korea. In such structures, the heat of hydration may cause serious cracking problems. The RC box structures are classified in this category that needs much attention to control the hydration heat during construction. The purpose of the present study is to analyse the parameters which are related to the thermal crackings of the box structures. In this study, the quantitative studies of thermal stresses according to construction conditions in the RC box structures are thoroughly analysed. Major influencing variables are studied through the finite element analysis which affect the thermal cracking of RC box structures.

  • PDF

Numerical modeling of an orthotropic RC slab band system using the Barcelona model

  • Kossakowski, Pawel G.;Uzarska, Izabela
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • Numerical modeling of reinforced concrete structures is a difficult engineering problem, primarily because of the material inhomogeneity. The behaviour of a concrete element with reinforcement can be analyzed using, for example, the Barcelona model, which according to the literature, is one of the most suitable models for this purpose. This article compares the experimental data obtained for an orthotropic concrete slab band system with those predicted numerically using Concrete Damage Plasticity model. Abaqus package was used to perform the calculations.

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Determination of Strut-and-fie Models using Evolutionary Structural Optimization (ESO기법을 이용한 스트럿-타이 모델의 결정)

  • 곽효경;노상훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.295-302
    • /
    • 2002
  • This paper introduces a method to determine strut-tie models in reinforced concrete (RC) structures using the evolutionary structural optimization (ESO). Even though strut-tie models are broadly adapted in design of reinforced concrete members subjected to shear and torsion, conventional methods can hardly give correct models in RC members subjected to complex loadings and geometry conditions. In this paper, the basic idea of the ESO method is used to determine more rational strut-tie models. Since an optimum topology of structures, finally obtained by the ESO method, usually represents a truss-like structure, the ESO method can effectively be used in finding the best strut-tie model in RC structures. Several example structures are provided to demonstrate the capability of the proposed method in finding the best strut-tie model of each RC structure and to verify its efficiency in application to real design problems.

  • PDF

Experimental investigation on the seismic behavior of reinforced concrete column-steel beam subassemblies

  • Xiong, Liquan;Men, Jinjie;Ren, Ruyue;Lei, Mengke
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.471-482
    • /
    • 2018
  • The composite reinforced concrete and steel (RCS) structural systems have larger structural lateral stiffness, higher inherent structural damping, and faster construction speed than either traditional reinforcement concrete or steel structures. In this paper, four RCS subassemblies with or without the RC slab designed following a strong column-weak beam philosophy were constructed and tested under reversed-cyclic loading. Parameters including the width of slab and composite effect of the RC slab and beam were explored. The test results showed that all specimens performed in a ductile manner with plastic hinges formed in the beam ends near the column faces. The seismic responses of composite connections are influenced significantly by different width of slabs. Compared with that of the steel beam without the RC slab, it was found that the load carrying capacity of composite connections with the RC slab increased by 30% on average, and strength degradation, energy dissipation also had better performance, while the ductility of that were almost the same. Furthermore, the contribution of connection deformation to the overall specimen displacement was analyzed and compared. It decreased approximately 10% due to the coupling effect in the columns and beams with the RC slab. Based on the test result, some suggestions are presented for the design of composite RCS joints.

Seismic vulnerability of Algerian reinforced concrete houses

  • Lazzali, Farah
    • Earthquakes and Structures
    • /
    • v.5 no.5
    • /
    • pp.571-588
    • /
    • 2013
  • Many of the current buildings in Algeria were built in the past without any consideration to the requirements of the seismic code. Among these buildings, there are a large number of individual houses built in the 1980's by their owners. They are Reinforced Concrete (RC) frame structures with unreinforced hollow masonry infill walls. This buildings type experienced major damage in the 2003 (Algeria) earthquake, generated by deficiencies in the structural system. In the present study, special attention is placed upon examining the vulnerability of RC frame houses. Their situation and their general features are investigated. Observing their seismic behavior, structural deficiencies are identified. The seismic vulnerability of this type of buildings depends on several factors, such as; structural system, plan and vertical configuration, materials and workmanship. The results of the vulnerability assessment of a group of RC frame houses are presented. Using a method based on the European Macroseismic Scale EMS-98 definitions, presented in previous studies, distribution of damage is obtained.

Shear Response Prediction of the Reinforced Concrete Beams using Truss Models for Membrane Element Analysis (막요소 해석에 사용된 트러스 모델을 이용한 철근콘크리트 보의 전단거동 예측)

  • Kim, Sang-Woo;Lee, Jung-Yoon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.77-85
    • /
    • 2003
  • This paper presents a truss model that can predict the shear behavior of reinforced concrete (RC) beams subjected to the combined actions of shear and flexure. Unlike other truss models, the proposed truss model, TATM, takes into account the effect of the flexural moment on the shear strength of RC beams with different shear span-to-depth ratios. To check the successfulness of the proposed model experimentally obtained stress shear strain curves were compared to the predicted ones using the proposed truss model. Furthermore, the shear strengths of 170 RC test beams with variable shear span-to-depth ratios were compared to the shear strengths as given by the truss model reported in this paper.

  • PDF