• 제목/요약/키워드: reinforced concrete structures (RC)

검색결과 1,044건 처리시간 0.024초

Performance of reinforced concrete moment resisting frames in Sarpol-e Zahab earthquake (November 12, 2017, Mw=7.3), Iran

  • Mohammad Amir Najafgholipour;Mehrdad Khajepour
    • Earthquakes and Structures
    • /
    • 제25권1호
    • /
    • pp.1-13
    • /
    • 2023
  • Reinforced concrete (RC) moment frames are used as lateral seismic load resisting systems in mid- and high-rise buildings in different regions of the world. Based on the seismic design provisions and construction details presented in design codes, RC frames with different levels of ductility (ordinary, intermediate, and special) can be designed and constructed. In Iran, there are RC buildings with various uses which have been constructed based on different editions of design codes. The seismic performance of RC structures (particularly moment frames) in real seismic events is of great importance. In this paper, the observations made on damaged RC moment frames after the destructive Sarpol-e Zahab earthquake with a moment magnitude of 7.3 are reported. Different levels of damage from the development of cracks in the structural and non-structural elements to the total collapse of buildings were observed. Furthermore, undesirable failure modes which are not expected in ductile seismic-resistant buildings were frequently observed in the damaged buildings. The RC moment frames built based on the previous editions of the design codes showed partial or total collapse in this seismic event. The extensive destruction of RC moment frames compared with the other structural systems (such as braced steel frames and confined masonry buildings) was attributed not only to the deficiencies in the construction practice of these buildings but also to the design procedure. In addition, the failure and collapse of masonry infills in RC moment frames were frequent modes of failure in this seismic event. In this paper, the main reasons related to design practice which led to extensive damage in the RC moment frames and their collapse are addressed.

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.

철근 콘크리트 구조물의 염소이온 침투 모델 (Modeling of Chloride Ingress in Reinforced Concrete Structures)

  • 구현본;김의태;이광명
    • 콘크리트학회논문집
    • /
    • 제15권1호
    • /
    • pp.25-34
    • /
    • 2003
  • 최근 들어 물리 화학적 침해로 인한 RC 구조물의 열화에 대한 관심이 높아지고 있는 실정이다. RC 구조물의 성능을 저하시키는 여러 가지 요인 중에서 특히 염소이온 침투로 인한 콘크리트내의 철근 부식이 가장 심각한 문제로 인식되고 있다. 본 연구에서는 콘크리트내의 염소이온 침투에 대한 수학적 모델을 제안하였다. 기존의 모델을 개선하기 위해 콘크리트 내부로 염소이온 침투에 대한 모델을 염수의 침투와 공극수를 통한 염소이온 확산항으로 구성하였다. 또한, 수화도, 상대습도, 온도, 염소이온 구속도에 따른 확산계수의 변동성을 염소이온 침투 모델에 고려하였다. 제안한 모델의 검증을 위하여 염소이온 침투 현상 해석 프로그램인 Life-365와의 해석 결과와 비교하였으며, 다양한 예제의 해석 결과를 비교 분석함으로써 염소이온 침투현상에 미치는 주요 인자의 영향과 제안된 모델의 적용성을 검토하였다. 향후 제안한 염소이온 침투 모델을 적용하여 RC 구조물의 사용수명 혹은 잔존수명을 예측하여 이를 RC 구조물의 내구성 설계와 유지관리에 활용할 수 있을 것으로 기대된다.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • 제57권4호
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

철근 콘트리트 구조물의 전산에 의한 내진설계법 (Automated Seismic Design Method for Reinforced Concrete Structures)

  • 정영수;전준태;김세열
    • 콘크리트학회지
    • /
    • 제3권3호
    • /
    • pp.111-119
    • /
    • 1991
  • 작금에 사용되고 있는 RC 구조물의 대개의 내진설계기법은 지진시 RC 구조물에 발생되는 손상의 분포상태를 고려치 않고 있다. 본 논문은 철근 콘크리트 구조물의 새로운 내진설계법 즉 Miner's 법칙을 수정한 지진 발생시의 흡수에너지(Dissipated Energy)를 변수로 하는 손상모델(3)를 사용하여 RC 프레임의 각각의 Node에서의 손상정도를 수치적으로 나타내고 이들 손상값의 크기가 전 부재에 고르게 분포토록 하기 위하여 각 부재의 주철근량을 설계변수로 채택한 설계기법을 소개하였다. 사용된 이력모델 및 손상모델의 정확성을 평가하기 위하여 해석적인 하중-변형곡선을 재생하여 실험곡선과 비교분석하였으며 제안된 내진설계법의 유용성은 3-bay 4-story 프레임 모델을 사용하여 입증하였다.

Bond slip modelling and its effect on numerical analysis of blast-induced responses of RC columns

  • Shi, Yanchao;Li, Zhong-Xian;Hao, Hong
    • Structural Engineering and Mechanics
    • /
    • 제32권2호
    • /
    • pp.251-267
    • /
    • 2009
  • Reinforced concrete (RC) structures consist of two different materials: concrete and steel bar. The stress transfer behaviour between the two materials through bond plays an important role in the load-carrying capacity of RC structures, especially when they subject to lateral load such as blast and seismic load. Therefore, bond and slip between concrete and reinforcement bar will affect the response of RC structures under such loads. However, in most numerical analyses of blast-induced structural responses, the perfect bond between concrete and steel bar is often assumed. The main reason is that it is very difficult to model bond slip in the commercial finite element software, especially in hydrodynamic codes. In the present study, a one-dimensional slide line contact model in LS-DYNA for modeling sliding of rebar along a string of concrete nodes is creatively used to model the bond slip between concrete and steel bars in RC structures. In order to model the bond slip accurately, a new approach to define the parameters of the one-dimensional slide line model from common pullout test data is proposed. Reliability and accuracy of the proposed approach and the one-dimensional slide line in modelling the bond slip between concrete and steel bar are demonstrated through comparison of numerical results and experimental data. A case study is then carried out to investigate the bond slip effect on numerical analysis of blast-induced responses of a RC column. Parametric studies are also conducted to investigate the effect of bond shear modulus, maximum elastic slip strain, and damage curve exponential coefficient on blast-induced response of RC columns. Finally, recommendations are given for modelling the bond slip in numerical analysis of blast-induced responses of RC columns.

하이브리드 FRP로 보강된 콘크리트 보의 거동 예측을 위한 해석연구 (Analytical Studies for Predicting Behaviors of RC Beams Retrofitted with Hybrid FRPs)

  • 우투이 나디아;김희선
    • 복합신소재구조학회 논문집
    • /
    • 제2권2호
    • /
    • pp.1-6
    • /
    • 2011
  • 본 연구는 하이브리드 FRP로 보강된 철근 콘크리트 보의 구조거동 예측을 목표로 구조해석을 수행하여 기존에 발표된 실험 연구 데이터와 비교하였다. 보다 정확한 구조해석을 위하여 현존하는 다양한 부착강도 모델을 검토한 후, 이 중 콘크리트 피복분리를 예측하는 Teng and Yao model과 FRP 탈락 현상을 예측할 수 있는 Smith and Teng model을 유한요소 해석 모델에 포함시켰다. 비선형 재료 및 형상 역시 구조해석 모델에 포함되었으며 이렇게 해석된 결과는 실험결과와 비교하여 유사한 경향을 나타냈다. 그러나 다양한 하이브리드 FRP로 보강한 철근 콘크리트 보의 파괴모드를 보다 정확하게 예측하기 위하여 현존하는 수치식의 수정 및 도입이 필요하다.

Comparative in-plane pushover response of a typical RC rectangular wall designed by different standards

  • Dashti, Farhad;Dhakal, Rajesh P.;Pampanin, Stefano
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.667-689
    • /
    • 2014
  • Structural walls (also known as shear walls) are one of the common lateral load resisting elements in reinforced concrete (RC) buildings in seismic regions. The performance of RC structural walls in recent earthquakes has exposed some problems with the existing design of RC structural walls. The main issues lie around the buckling of bars, out-of plane deformation of the wall (especially the zone deteriorated in compression), reinforcement getting snapped beneath a solitary thin crack etc. This study compares performance of a typical wall designed by different standards. For this purpose, a case study RC shear wall is taken from the Hotel Grand Chancellor in Christchurch which was designed according to the 1982 version of the New Zealand concrete structures standard (NZS3101:1982). The wall is redesigned in this study to comply with the detailing requirements of three standards; ACI-318-11, NZS3101:2006 and Eurocode 8 in such a way that they provide the same flexural and shear capacity. Based on section analysis and pushover analysis, nonlinear responses of the walls are compared in terms of their lateral load capacity and curvature as well as displacement ductilities, and the effect of the code limitations on nonlinear responses of the different walls are evaluated. A parametric study is also carried out to further investigate the effect of confinement length and axial load ratio on the lateral response of shear walls.

Experimental investigation of reinforced concrete columns retrofitted with polyester sheet

  • Chang, Chunho;Kim, Sung Jig;Park, Dongbyung;Choi, Sunghun
    • Earthquakes and Structures
    • /
    • 제6권3호
    • /
    • pp.237-250
    • /
    • 2014
  • This paper experimentally investigates the seismic performance of RC columns retrofitted with Super Reinforcement with Flexibility (SRF), which is a polyester fiber reinforced polymer. A total of three specimens with a scale factor of 1/2 were constructed and tested in order to assess the structural behavior of the retrofitted RC columns. One specimen was a non-seismically designed column without any retrofit, while others were retrofitted with either one or two layers of the polyester belt with urethane as the adhesive. Static cyclic testing with a constant axial load was conducted to assess the seismic performance of the retrofitted RC columns. It is concluded that the SRF retrofitting method increases the strength and ductility of the RC columns and can also impact on the failure mode of the columns.

부식률에 따른 RC 부재의 부착거동에 관한 실험적 연구 (Experimental Study on Bond Behavior of Reinforced Concrete Members with Corrosion Ratio)

  • 김강래;이동근;박진호;김학모;양은익
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.177-180
    • /
    • 2006
  • Reinforced concrete has been widely used as a semi-permanent construction materials. However, sea sand, deicing salt, and marine condition might induce the corrosion of embedded reinforcement due to the penetration of chlorides in concrete structures. This reinforcement corrosion causes serious problems on safety and serviceability of structures during lifetime. Also, reinforcement corrosion may cause the collapse of structures in worst case, so that the corrosion problem is more and more intensely growing. The purpose of this paper is to provide the fundamental data for the mechanical effect of corrosion through evaluation on bond characteristics of reinforced concrete using corroded bars.

  • PDF