• Title/Summary/Keyword: reinforced concrete section method

Search Result 227, Processing Time 0.02 seconds

Bond-Slip Effect in Analysis of RC Beams Using Layered Section Method (적층단면법을 토대로한 철근콘크리트 보 해석에서의 부착슬립효과)

  • Kwak-Hyo-Gyoung;Kim, Jin-Kook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.65-68
    • /
    • 2005
  • An analytical procedure to analyze reinforced concrete (RC) frame subject to cyclic as well as monotonic loadings is proposed on the basis of the layered section method. In contrast to the classical nonlinear approaches adopting the perfect bond assumption, the bond-slip effect along the reinforcing bar is quantified with the force equilibrium and compatibility condition at the post-cracking stage and its contribution is implemented into the reinforcing. The advantage of the proposed analytical procedure, therefore, will be on the consideration of the bond-slip effect while using the classical layered section method without additional consideration such as taking the double nodes. Through correlation studies between experimental data and analytical results, it is verified that the proposed analytical procedure can effectively simulate the cracking behavior of RC beams, columns and Frame accompanying the stiffness degradation caused by the bond-slip.

  • PDF

Experimental study on long-term behaviour of CFRP strengthened RC beams under sustained load

  • Ahmed, Ehsan;Sobuz, Habibur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.105-120
    • /
    • 2011
  • The strengthening and rehabilitation of reinforced concrete structures with externally bonded carbon fibre reinforced polymer (FRP) laminates has shown excellent performance and, as a result, this technology is rapidly replacing steel plate bonding techniques. This paper addresses this issue, and presents results deals with the influence of external bonded CFRP-reinforcement on the time-dependent behavior of reinforced concrete beams. A total of eight reinforced concrete beams with cracked and un-cracked section, with and without externally bonded CFRP laminates, were investigated for their creep and shrinkage behavior. All the beams considered in this paper were simply supported and subjected to a uniform sustained loading for the period of six months. The main parameters of this study are two types of sustained load and different degrees of strengthening scheme for both cracked and un-cracked sections of beams. Both analytical and experimental work has been carried out on strengthened beams to investigate the cracking and deflection performance. The applied sustained load was 56% and 38% of the ultimate static capacities of the un-strengthened beams for cracked and un-cracked section respectively. The analytical values based on effective modulus method (EMM) are compared to the experimental results and it is found that the analytical values are in general give conservative estimates of the experimental results. It was concluded that the attachment of CFRP composite laminates has a positive influence on the long term performance of strengthened beams.

Reliability Analysis of Reinforced Concrete Shear Wall Subjected to Biaxial Bending (이축 휨 모멘트를 받는 철근콘크리트 전단벽의 신뢰성 해석)

  • Park Jae Young;Shin Yeong-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.433-436
    • /
    • 2004
  • The safety of buildings is generally estimated by analyzing a plane frame ignoring a minor bending moment. In this paper, uncertainties of reinforced concrete shear wall subjected to a biaxial bending are considered. First, major parameters are selected from all parameters of general shear wall design to perform a reliability analysis in their practical ranges, means and standard derivations of selected design parameters for the reliability analysis are calculated by a data mining as a simulation method. The bi-section method is used to find inclined neutral axis and its limit state using MATLAB subjected to the concept on strength design method. The reliability index $\beta$ as a safety index is calculated based on AFOSM(Advanced First-Order Second Moment) method. Also, if target reliability index $\beta_T$ is decided by an engineer an amount of reinforcement can be calculated by subtracting the reliability index $\beta$ from the target reliability index $\beta_T$.

  • PDF

Analytical Study of Flexural Behavior on Steel Fiber Reinforced Concrete Structure (SFRC구조물의 휨거동에 관한 해석적 연구)

  • Seo, Seung-Tag
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • Various characters of the concrete are greatly improved as the effect of the steel fiber. As the improvement effect of the steel fiber, the increment in flexural strength, shear strength, toughness, and impact strength are remarkable, and tenacious concrete is obtained. This paper presents model which can predict mechanical behavior of the structure according to aspect ratio and volume fraction of steel fiber. Experiments on compressive strength, elastic modulus and tensile strength were performed with self-made cylindrical specimens of variable aspect ratios. This paper presents an analytical study on the behavior of a beam specimen with steel fiber reinforced concrete(SFRC). The effect of the SFRC on the crack pattern, failure mode and the flexural behavior of the structure were investigated. The analysis model based on the nonlinear layered finite element method was successfully able to find the necessary amount of steel fibers, tensile steels and beam section which can best approximate flexural strength and ductility of a given conventionally reinforced concrete beam.

  • PDF

Strength of biaxially loaded high strength reinforced concrete columns

  • Dundar, Cengiz;Tokgoz, Serkan
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.649-661
    • /
    • 2012
  • An experimental research was conducted to investigate the strength of biaxially loaded short and slender reinforced concrete columns with high strength concrete. In the study, square and L-shaped section reinforced concrete columns were constructed and tested to obtain the load-deformation behaviour and strength of columns. The test results of column specimens were analysed with a theoretical method based on the fiber element technique. The theoretical ultimate strength capacities and the test results of column specimens have been compared and discussed in the paper. Besides this, observed failure mode and experimental and theoretical load-lateral deflection behaviour of the column specimens are presented.

Seismic Fragility Analysis of Reinforced Concrete Shear Walls Considering Material Deterioration (재료의 열화를 고려한 철근콘크리트 전단벽의 지진 취약도 분석)

  • Myung Kue, Lee;Jang Ho, Park
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.6
    • /
    • pp.81-88
    • /
    • 2022
  • It is necessary to better understand the effect of age-related degradation on the performance of reinforced concrete shear walls in nuclear power plants in order to ensure their structural safety in the event of earthquakes. Therefore, this paper studies seismic fragility of the typical shear wall in nuclear power plants under earthquake excitation Reinforced concrete shear wall is composed of wall, horizontal and vertical flanges. Due to characteristics of its geometry, it is difficult to predict the ultimate behavior of shear wall under earthquake excitation. In this study, for more realistic numerical simulation, the Latin Hyper-Cube (LHC) simulation technique was used to generate uncertain variables for the material properties of concrete shear walls. The effects of crack, characteristics of inelastic behavior of concrete, and loss of cross section were considered in the nonlinear finite element analysis. The effects of aging-related deterioration were investigated on the performance of reinforced concrete shear walls through analysis of undegraded concrete shear walls and degraded concrete shear walls. The resulting seismic fragility curves present the change of performance of concrete shear wall due to age-related degradation.

Intermediate crack-induced debonding analysis for RC beams strengthened with FRP plates

  • Wantanasiri, Peelak;Lenwari, Akhrawat
    • Structural Engineering and Mechanics
    • /
    • v.56 no.3
    • /
    • pp.473-490
    • /
    • 2015
  • This paper presents the analysis of intermediate crack-induced (IC) debonding failure loads for reinforced concrete (RC) beams strengthened with adhesively-bonded fiber-reinforced polymer (FRP) plates or sheets. The analysis consists of the energy release and simple ACI methods. In the energy release method, a fracture criterion is employed to predict the debonding loads. The interfacial fracture energy that indicates the resistance to debonding is related to the bond-slip relationships obtained from the shear test of FRP-to-concrete bonded joints. The section analysis that considers the effect of concrete's tension stiffening is employed to develop the moment-curvature relationships of the FRP-strengthened sections. In the ACI method, the onset of debonding is assumed when the FRP strain reaches the debonding strain limit. The tension stiffening effect is neglected in developing a moment-curvature relationship. For a comparison purpose, both methods are used to numerically investigate the effects of relevant parameters on the IC debonding failure loads. The results show that the debonding failure load generally increases as the concrete compressive strength, FRP reinforcement ratio, FRP elastic modulus and steel reinforcement ratio increase.

Postfire reliability analysis of axial load bearing capacity of CFRP retrofitted concrete columns

  • Cai, Bin;Hao, Liyan;Fu, Feng
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.289-299
    • /
    • 2020
  • A reliability analysis of the axial compressive load bearing capacity of postfire reinforced concrete (RC) columns strengthened with carbon fiber reinforced polymer (CFRP) sheets was presented. A 3D finite element (FE) model was built for heat transfer analysis using software ABAQUS. Based on the temperature distribution obtained from the FE analysis, the residual axial compressive load bearing capacity of RC columns was worked out using the section method. Formulas for calculating the residual axial compressive load bearing capacity of the columns after fire exposure and the axial compressive load bearing capacity of postfire columns retrofitted with CFRP sheets were developed. Then the Monte Carlo method was used to analyze the reliability of the axial compressive load bearing capacity of the RC columns retrofitted with CFRP sheets using a code developed in MATLAB. The effects of fire exposure time, load ratio, number of CFRP layers, concrete cover thickness, and longitudinal reinforcement ratio on the reliability of the axial compressive load bearing capacity of the columns after fire were investigated. The results show that within 60 minutes of fire exposure time, the reliability index of the RC columns after retrofitting with two layers of CFRPs can meet the requirements of Chinese code GB 50068 (GB 2001) for safety level II. This method is effective and accurate for the reliability analysis of the axial load bearing capacity of postfire reinforced concrete columns retrofitted with CFRP.

Ultimate Analysis of RC Beam with Unbonded Prestressing CFRP Plate (비부착 CFRP 판으로 긴장된 RC 보의 극한해석)

  • Lee, Jae-Seok;Choi, Kyu-Chon;Park, Young-Ha
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.249-252
    • /
    • 2008
  • A study for the nonlinear analysis method of RC(Reinforced Concrete) beams with unbonded prestressing CFRP plate is presented. The cross-section of RC beam element is idealized as an assemblage of concrete and reinforcing steel fibers in order to account for varied material properties within the cross-section of the element. The unbonded CFRP plate is modeled as a series of the CFRP plate segments each of which is linked to the RC beam element, but slips without any resistance to simulate the unbonded behavior of the CFRP plate. The stress of each CFRP plate segment is redistributed iteratively using the force equilibrium relationship at each common node until it reaches at the same stress level. To evaluate the validity of the proposed analysis method, the results of ultimate analysis of the reinforced concrete beams with unbonded prestressing CFRP plates are compared with the experimental results obtained from other investigators. The proposed analysis method is found to predict ultimate behaviors of these beams fairly well.

  • PDF

Prediction of Shear Strength of R/C Beams using Modified Compression Field Theory and ACI Code

  • Park, Sang-Yeol
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.5-17
    • /
    • 1999
  • In recent years. the concept of the modified compression field theory (MCFT) was develped and applied to the analysis of reinforced concrete beams subjected to shear, moment, and axial load. Although too complex for regular use in the shear design or beams. the procedure has value in its ability to provide a rational method of anlysis and design for reinforced concrete members. The objective of this paper is to review the MCFT and apply it for the prediction of the response and shear strength of reinforced concrete beams A Parametric analysis was Performed on a reinforced T-section concrete beam to evaluate and compare the effects of concrete strength. longitudinal reinforcement ratio shear reinforcement ratio, and shear span to depth ratio in two different approaches the MCFT and the ACI code. The analytical study showed that the concrete contribution to shear strength by the MCFT was higher than the one by the ACI code in beams without stirrups, while it was lower with stirrups. On the other hand. shear reinforcement contribution predicted by the MCFT was much higher than the one by the ACI code. This is because the inclination angle of shear crack is much smaller than 45$^{\circ}$assumed in the ACI code.

  • PDF