• Title/Summary/Keyword: reinforced concrete pier

Search Result 138, Processing Time 0.024 seconds

Analytical Study on the Size Effect Influencing Inelastic Behavior of Reinforced Concrete Bridge Piers (철근콘크리트 교각의 비탄성 거동에 미치는 크기효과에 관한 해석적 연구)

  • 김태훈;김운학;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.23-31
    • /
    • 2002
  • The purpose of this study is to investigate the size effect on inelastic behavior of reinforced concrete bridge piers. A computer program, named RCAHEST(reinforced concrete analysis in higher evaluation system technology), for the analysis for reinforced concrete structures was used. Material nonlinearity is taken into account by comprising tensile, compressive and shear models of cracked concrete and a model of reinforcing steel. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The effect of number of load reversals with the same displacement amplitude has been also taken into account to model the reinforcing steel. To determine the size effect on bridge pier inelastic behavior, a 1/4-scale replicate model was also loaded for comparison with the full-scale bridge pier behavior.

Vibration analysis of train-bridge system with a damaged pier by flotilla collision and running safety of high-speed train

  • Xia, Chaoyi;Wang, Kunpeng;Huang, Jiacheng;Xia, He;Qi, Lin;Wu, Xuan
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.69-79
    • /
    • 2022
  • The dynamic responses of a pier-pile-soil system subjected to a barge/flotilla collision are analyzed. A coupled high-speed train and bridge system with a damaged pier after barge/flotilla collision is established by taking the additional unevenness of the track induced by the damaged pier as the self-excitation of the system. The whole process of a CRH2 high-speed train running on the 6×32 m simply-supported PC (prestressed concrete) box-girder bridge with a damaged pier is simulated as a case study. The results show that the lateral displacements and accelerations of the bridge with a damaged pier are much greater than the ones before the collision. The running safety indices of the train increase with the train speed as well as with the number of barges in the flotilla. In flotilla collision, the lateral wheel/rail forces of the train exceed the allowable values at a certain speed, which influences the running safety of the trains.

Extension of theoretical approaches for the shear strength of reinforced concrete beams with corroded stirrups

  • Pier Paolo Rossi;Nino Spinella
    • Computers and Concrete
    • /
    • v.31 no.1
    • /
    • pp.33-52
    • /
    • 2023
  • This paper proposes and validates the extension of two models, previously formulated for the evaluation of the shear strength of reinforced concrete members with un-corroded reinforcements, to the case of beams with corroded stirrups. These extended models are based on the plasticity theory (this model has been proposed in the past by one of the authors) and on the simplified modified compression field theory. The response of these models is compared with that of the compression chord capacity model, which has recently been embedded with modifications that simulate the effects of steel corrosion. These latter modifications are first discussed and then introduced into the other two models. An existing database of slender and non-slender beams tested in laboratory by other researchers is revised and improved. Finally, all the considered models are applied to the selected specimens and a comparison is drawn between the shear strength resulting from the considered models and the shear strength resulting from the laboratory tests. The effects of corrosion on some important parameters of the ultimate shear response of the reinforced concrete beams are also discussed.

A Study on Strengthening of Reinforced Concrete Pier Caps Using Prestressed Near Surface Mounted CFRP (프리스트레스가 도입된 표면매립 CFRP를 이용한 교각 두부 보강에 관한 연구)

  • Hong, Sung-Nam;Kim, Tae-Wan;Park, Sun-Kyu;Park, Jong-Sup;Park, Young-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.595-602
    • /
    • 2007
  • Recently, concrete structures with carbon fiber reinforced polymer (CFRP) reinforcements have been commonly used for the bridge and building construction. In this paper, pier caps were strengthened by prestressed near surface mounted CFRP. To verify the effectiveness of the strengthening method, 7 pier cap specimens were fabricated. One specimen was designed for control, two for external prestressing steel strands, two for CFRP plates, and two for CFRP bars. Experimental variables consist of type of reinforcement materials and prestressing levels. The results of laboratory have shown that the ultimate load capacities of prestressed near surface mounted CFRP specimens were about $20{\sim}33%$ greater than that of a control specimen. Also, ultimate load capacities of prestressed near surface mounted CFRP specimens were similar to those of external prestressing specimens with steel strands.

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Load-carrying capacity degradation of reinforced concrete piers due to corrosion of wrapped steel plates

  • Gao, Shengbin;Ikai, Toyoki;Ni, Jie;Ge, Hanbin
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.91-106
    • /
    • 2016
  • Two-dimensional elastoplastic finite element formulation is employed to investigate the load- carrying capacity degradation of reinforced concrete piers wrapped with steel plates due to occurrence of corrosion at the pier base. By comparing with experimental results, the employed finite element analysis method is verified to be accurate. After that, a series of parametric studies are conducted to investigate the effect of corrosion ratio and corrosion mode of steel plates located near the base of in-service pier P2 on load-carrying capacity of the piers. It is observed that the load-carrying capacity of the piers decreases with the increase in corrosion ratio of steel plates. There exists an obvious linear relationship between the load-carrying capacity and the corrosion ratio in the case of even corrosion mode. The degradation of load-carrying capacity resulted from the web's uneven corrosion mode is more serious than that under even corrosion mode, and the former case is more liable to occur than the latter case in actual engineering application. Finally, the failure modes of the piers under different corrosion state are discussed. It is found that the principal tensile strain of concrete and yield range of steel plates are distributed within a wide range in the case of slight corrosion, and they are concentrated on the column base when complete corrosion occurs. The findings obtained from the present study can provide a useful reference for the maintenance and strengthening of the in-service piers.

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

Seismic Performance Assessment of Circular Reinforced Concrete Bridge Piers with Confinement Steel: II. Performance Assessment (원형 철근콘크리트 교각의 횡방향 철근에 따른 내진성능평가 : II. 성능평가)

  • Kim, Tae-Hoon;Kim, Young-Jin;Kang, Hyeong-Taek;Shin, Hyun-Mock
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2A
    • /
    • pp.351-361
    • /
    • 2006
  • In this study, nonlinear finite element analysis procedures are presented for the seismic performance assessment of circular reinforced concrete bridge piers with confinement steel. This paper defines a damage index based on the predicted hysteretic behavior of a circular reinforced concrete bridge pier. Damage indices aim to provide a means of quantifying numerically the damage in circular reinforced concrete bridge piers sustained under earthquake loading. The proposed numerical method is applied to circular reinforced concrete bridge piers with confinement steel tested by the authors. The proposed numerical method gives a realistic prediction of seismic performance throughout the loading cycles for several test specimens investigated.

A Study on Seismic Performance of Spiral Prer (나선철근교각의 내진성능에 관한 연구)

  • 배성용;김광수;이형준;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.363-368
    • /
    • 2000
  • The Korean Bridge Design Standard Specifications adopted the seismic design requirements in 1992. However, The current seismic design requirements for bridges are based on the USA seismic codes for sever earthquake. This provides the basic factors that affects the performance of spiral reinforced concrete piers for seismic loading, and The specimen tests are performed based on load-displacement, effective stiffness and displacement ductility, etc. The quasi-static test was adopted in order to investigate seismic performance of the spiral reinforced concrete pier specimens which had different transverse steel amount, spacing and longitudinal steel ratio under different axial load levels. This study is concluded that seismic design for transverse reinforcement content of spiral reinforced concrete column has influenced on axial load and effective stiffness etc.

  • PDF

Quasi-Static Test for Seismic Performance of Reinforced Concrete Bridge Piers with Lap Splice (준정적실험에 의한 실물 원형교각의 내진성능평가를 위한 실험적 연구)

  • Kim, Hoon;Chung, Young-Soo;Lee, Jae-Hoon;Choi, Jin-Ho;Cho, Jun-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.941-946
    • /
    • 2002
  • Short reinforced concrete bridge piers are particularly susceptible to shear failure as a consequence of the high shear/moment ratio and conservatism in the flexural strength design of existing RC bridge pier, which were constructed before 1992. In addition, shear failure is brittle and involves rapid strength degradation. Inelastic shear deformation is thus unsuitable for ductile seismic response. It is, however, believed that there are not many experimental research works for shear failure of the existing RC bridge pier in Korean peninsula subjected to earthquake motions. The object of this research is to evaluate the seismic performance of existing circular RC bridge piers by the quasi-static test. Existing RC bridge piers were moderate seismically designed in accordance with the conventional provisions of Korea Highway Design Specification. This study has been performed to verify the effect of aspect ratio (column height-diameter ratio). Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteric curve, envelope curve etc.

  • PDF