• Title/Summary/Keyword: reinforced concrete moment frame

Search Result 158, Processing Time 0.03 seconds

Plastic design of seismic resistant reinforced concrete frame

  • Montuori, Rosario;Muscati, Roberta
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.205-224
    • /
    • 2015
  • A new method for designing moment resisting concrete frames failing in a global mode is presented in this paper. Starting from the analysis of the typical collapse mechanisms of frames subjected to horizontal forces, the method is based on the application of the kinematic theorem of plastic collapse. The beam section properties are assumed to be known quantities, because they are designed to resist vertical loads. As a consequence, the unknowns of the design problem are the column sections. They are determined by means of design conditions expressing that the kinematically admissible multiplier of the horizontal forces corresponding to the global mechanism has to be the smallest among all kinematically admissible multipliers. In addition, the proposed design method includes the influence of second-order effects. In particular, second-order effects can play an important role in the seismic design and can be accounted for by means of the mechanism equilibrium curves of the analysed collapse mechanism. The practical application of the proposed methodology is herein presented with reference to the design of a multi-storey frame whose pattern of yielding is validated by means of push-over analysis.

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF

A load increment method for ductile reinforced concrete (RC) frame structures considering strain hardening effects

  • Gunhan Aksoylu, M.;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.38 no.2
    • /
    • pp.231-247
    • /
    • 2011
  • This study introduces a new load increment method for the ductile reinforced concrete (RC) frame structures by including strain-hardening effects. The proposed method is a nonlinear static analysis technique employed for RC frame structures subjected to constant gravity loads and monotonically increasing lateral loads. The material nonlinearity in RC structural elements is considered by adopting plastic hinge concept which is extended by including the strain hardening as well as interaction between bending moment and axial force. Geometric non-linearity, known as second order effect, is implemented to the method as well.

Inelatic Behaviors of A 3-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 3층 철근콘크리트 골조의 비탄성 거동)

  • 이한선;우성우;허윤섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04b
    • /
    • pp.427-432
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting reinforced frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA's) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. The base shear was measured by using specially made load cells. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period and damping ratio of the model.

  • PDF

Evaluation of Emulative Level for Precast Moment Frame Systems with Dry Mechanical Splices by Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 건식 기계적이음을 갖는 프리캐스트 모멘트 골조의 동등성 평가)

  • Kim, Seon-Hoon;Lee, Won Jun;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2024
  • This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.

Three dimensional analysis of reinforced concrete frames considering the cracking effect and geometric nonlinearity

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Structural Engineering and Mechanics
    • /
    • v.31 no.2
    • /
    • pp.163-180
    • /
    • 2009
  • In the design of tall reinforced concrete (R/C) buildings, the serviceability stiffness criteria in terms of maximum lateral displacement and inter-story drift must be satisfied to prevent large second-order P-delta effects. To accurately assess the lateral deflection and stiffness of tall R/C structures, cracked members in these structures need to be identified and their effective member flexural stiffness determined. In addition, the implementation of the geometric nonlinearity in the analysis can be significant for an accurate prediction of lateral deflection of the structure, particularly in the case of tall R/C building under lateral loading. It can therefore be important to consider the cracking effect together with the geometric nonlinearity in the analysis in order to obtain more accurate results. In the present study, a computer program based on the iterative procedure has been developed for the three dimensional analysis of reinforced concrete frames with cracked beam and column elements. Probability-based effective stiffness model is used for the effective flexural stiffness of a cracked member. In the analysis, the geometric nonlinearity due to the interaction of axial force and bending moment and the displacements of joints are also taken into account. The analytical procedure has been demonstrated through the application of R/C frame examples in which its accuracy and efficiency in comparison with experimental and other analytical results are verified. The effectiveness of the analytical procedure is also illustrated through a practical four story R/C frame example. The iterative procedure provides equally good and consistent prediction of lateral deflection and effective flexural member stiffness. The proposed analytical procedure is efficient from the viewpoints of computational effort and convergence rate.

Shaking Table Tests of 1/12-Sale R.C. Bearing-Wall system with Bottom Piloti Frames (1/12 축소 철근콘크리트 상부벽식-하부골조 건축물의 진동대 실험)

  • 이한선;고동우;권기현;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.407-414
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1 :12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have two different layouts of the plan The one is a moment-resisting frame system and the other is a moment-resisting frame system with a infilled shear wall. Then, this model was subjected to a series of earthquake excitations. The test results show that the existence of shear wall reduced the shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle.

  • PDF

Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity (고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

Development of a seismic retrofit system made of steel frame with vertical slits

  • Kang, Hyungoo;Adane, Michael;Chun, Seungho;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.283-294
    • /
    • 2022
  • In this study, a new seismic retrofit scheme of building structures is developed by combining a steel moment frame and steel slit plates to be installed inside of an existing reinforced concrete frame. This device has the energy dissipation capability of slit dampers with slight loss of stiffness compared to the conventional steel frame reinforcement method. In order to investigate the seismic performance of the retrofit system, it was installed inside of a reinforced concrete frame and tested under cyclic loading. Finite element analysis was carried out for validation of the test results, and it was observed that the analysis and the test results match well. An analytical model was developed to apply the retrofit system to a commercial software to be used for seismic retrofit design of an example structure. The effectiveness of the retrofit scheme was investigated through nonlinear time-history response analysis (NLTHA). The cyclic loading test showed that the steel frame with slit dampers provides significant increase in strength and ductility to the bare structure. According to the analysis results of a case study building, the proposed system turned out to be effective in decreasing the seismic response of the model structure below the given target limit state.

Seismic Evaluation of Beam-Column Joint Specimens of RC Special Moment Frames (철근콘크리트 특수모멘트골조의 보-기둥 접합부 실험체의 내진성능평가)

  • Lee, Ki-Hak;Seok, Keun-Yung;Jung, Chan-Woo;Shin, Young-Shik;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.2
    • /
    • pp.85-93
    • /
    • 2008
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column joints of reinforced concrete special moment frames. All of the test specimens were classified as special moment frame (SMF), based on the design and detailing requirements of the ACI 318-02 provisions. The acceptance criteria, originally defined for steel moment frame connections in the 1997 edition of the AISC Seismic provisions, were used to evaluate the beam-column joints of the reinforced concrete moment frames. A total of 39 test specimens were examined in detail. Most of the joints that satisfy the design requirements for special moment frame structures were found to be ductile up to a plastic rotation of 3% without any major degradation in strength. This is mainly due to the stringent ACI 318-02 requirements for special moment frame joints. The presence of transverse beams increases confinement and shear resistance of joints, which results in better performance than for joints without transverse beams. All of the SMF connections that satisfy the ACI 318-02 limitations on joint shear stress turned out to meet the acceptance criteria.

  • PDF