• 제목/요약/키워드: reinforced concrete joints

검색결과 321건 처리시간 0.026초

Load Distribution Factors for Hollow Core Slabs with In-situ Reinforced Concrete Joints

  • Song, Jong-Young;Kim S, Elliott;Lee, Ho;Kwak, Hyo-Gyoung
    • International Journal of Concrete Structures and Materials
    • /
    • 제3권1호
    • /
    • pp.63-69
    • /
    • 2009
  • This paper provides the engineer with a simple design method dealing with situations arise where in-situ reinforced concrete joints are cast between hollow core units. Using finite element method, hollow core slabs with wide in-situ RC joints under point load and line loads are analysed. In addition, some important behavioural characteristics of the floor slab subjected to line and point loads are investigated. In-situ reinforced concrete joint causes reduction of load distribution for remote units because distance to the remote units from the point of load is increased, while the portion of load distribution carried by loaded unit increases. Also, it was turned out load distribution factors for point load and line loads are almost same. Finally, we suggest a simple analytical method, which can determine load distribution factors using normalized deflections by regression analysis for design purposes.

Interaction of internal forces of interior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Jiangli
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.427-443
    • /
    • 2014
  • This paper presents detailed analysis of the internal forces of interior beam-column joints of reinforced concrete (RC) frames under seismic action, identifies critical joint sections, proposes consistent definitions of average joint shear stress and average joint shear strain, derives formulas for calculating average joint shear and joint torque, and reports simplified analysis of the effects of joint shear and torque on the flexural strengths of critical joint sections. Numerical results of internal joint forces and flexural strengths of critical joint sections are presented for a pair of concentric and eccentric interior connections extracted from a seismically designed RC frame. The results indicate that effects of joint shear and torque may reduce the column-to-beam flexural strength ratios to below unity and lead to "joint-yielding mechanism" for seismically designed interior connections. The information presented in this paper aims to provide some new insight into the seismic behavior of interior beam-column joints and form a preliminary basis for analyzing the complicated interaction of internal joint forces.

철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술 (New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints)

  • 하기주
    • 한국지진공학회논문집
    • /
    • 제8권2호
    • /
    • pp.73-81
    • /
    • 2004
  • 본 연구에서는 기존 철근콘크리트건물 보-기둥 접합부의 내진 성능을 개선하기 위하여 탄소섬유를 사용하여 구조물을 보강한 후 실험을 수행하였다. 이를 위하여 6개의 철근콘크리트 보-기둥 접합부를 제작하였으며, 지진하중과 같은 반복하중이 작용할 때 보강재료 및 보강영역 등을 변수로 하여 실험을 수행하여 각 보강변수에 따른 보강효과를 평가하였다. 본 실험을 통하여 구조물의 내진 성능 및 연성능력을 증진시킬 목적으로 새로운 보강재료(탄소섬유판, 탄소섬유봉, 탄소섬유쉬트)로 설계된 보강 실험체(RPC-CP2, RPC-CR, RJC-CP, RJC-CR)들은 내력증진은 물론이고 안정적인 이력거동을 확보할 수 있었다.

Shear strength model for reinforced concrete beam-column joints based on hybrid approach

  • Parate, Kanak N.;Kumar, Ratnesh
    • Computers and Concrete
    • /
    • 제23권6호
    • /
    • pp.377-398
    • /
    • 2019
  • Behavior of RC beam-column joint is very complex as the composite material behaves differently in elastic and inelastic range. The approaches generally used for predicting joint shear strength are either based on theoretical, strut-and-tie or empirical methods. These approaches are incapable of predicting the accurate response of the joint for entire range of loading. In the present study a new generalized RC beam-column joint shear strength model based on hybrid approach i.e. combined strut-and-tie and empirical approach has been proposed. The contribution of governing parameters affecting the joint shear strength under compression has been derived from compressive strut approach whereas; the governing parameters active under tension has been extracted from empirical approach. The proposed model is applicable for various conditions such as, joints reinforced either with or without shear reinforcement, joints with wide beam or wide column, joints with transverse beams and slab, joints reinforced with X-bars, different anchorage of beam bar, and column subjected to various axial loading conditions. The joint shear strength prediction of the proposed model has been compared with 435 experimental results and with eleven popular models from literature. In comparison to other eleven models the prediction of the proposed model is found closest to the experimental results. Moreover, from statistical analysis of the results, the proposed model has the least coefficient of variation. The proposed model is simple in application and can be effectively used by designers.

CFRP로 보강된 비내진 철근콘크리트 보-기둥 접합부의 내진성능 실험 (Experimental evolution of RC beam-column joints strengthened with CFRP)

  • 김민;이기학;이재홍;우성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.106-109
    • /
    • 2006
  • It has been shown that many reinforced concrete(RC) structures designed without seismic details have experienced brittle shear failures in the beam-column joint area and may result in large permanent deformations and structural collapse. In this study, experimental investigations for RC beam-column joints strengthened with the carbon fiber-reinforced polymer(CFRP) under cyclic loadings were presented. The use of CFRP in the joint was varied to determine the effective way of improving the structural performances of RC joints. Ten RC beam-column joints were designed and tested with cyclic loadings. The experimental results showed that the use of CFRP in RC joints would be very effective solutions to improve the seismic performances of the non-seismic RC joints. All of the non-seismic design specimens strengthened with CFRP sheets showed the significant increase of strength and ductility.

  • PDF

Experimental and numerical studies on seismic behaviour of exterior beam-column joints

  • Asha, P.;Sundararajan, R.
    • Computers and Concrete
    • /
    • 제13권2호
    • /
    • pp.221-234
    • /
    • 2014
  • A nonlinear finite element analysis using ANSYS is used to evaluate the seismic behavior of reinforced concrete exterior beam-column joints. The behavior of the finite element models under cyclic loading is compared with the experimental results. Two beam-column joint specimens (SH and SHD) with square hoop confinement in joint and throughout the column with detailing as per IS 13920 are studied. The specimen SHD was provided with additional diagonal bars from column to beam to relocate the plastic hinge formation from beam-column interface. The load-displacement relationship, joint shear stress and strain in beam obtained from numerical study showed good agreement with the experimental results. This investigation proves that seismic behaviour of reinforced concrete beam-column joints under reversed cyclic loading can be evaluated successfully using finite element modeling and analysis.

철근콘크리트 기둥과 철골 보로 이루어진 혼합구조 접합부의 역학적 거동 (Structural Behavior of Joints Consisting of Reinforced Concrete Column and Steel Beam)

  • 김도균;김욱종;이동렬;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.501-504
    • /
    • 1999
  • Recently, composite structural systems have been developed actively due to its structural advantages of combining different materials. The objective of this paper is to investigate the structural behavior of moment connection in composite structures which consist of steel beams and reinforced concrete columns. In this study, three 1/2 scale joint specimens were tested under reversal loads. The results showed that beam-column joints maintain ductility, strength and exhibit excellent energy-dissipating capacity when subjected to inelastic deformations under reversal load.

  • PDF

철골보와 철근콘크리트기둥으로 구성된 내부 접합부의 극한전단강도 산정에 관한 연구 (A Study on the Ultimate Shear Strength Estimation of the Interior Joints of Steel Beam and Reinforced Concrete Column)

  • 문상훈;안재혁;박천석
    • 한국안전학회지
    • /
    • 제21권2호
    • /
    • pp.57-62
    • /
    • 2006
  • Recent trends in the construction of building frame feature the use of composite steel concrete members. One of such system, RCS(Reinforced Concrete column and Steel beam) system, is known as a type of system to maximize the structural and economic benefits in the most efficient manner. This paper is focusing on an study of ultimate shear strength estimation of the interior beam-column joints of RCS system, with reinforced concrete column and steel beam. Current design methods as well as the majority of the previous researches for ultimate shear strength of the interior beam-column joint of RCS system are not easy to apply actual manner. There is a need to propose the rational macro models based on analytical approach. In this study, design method variables for interior beam-column joints of RCS system is studied assuming shear resistance of steel web panel, diagonal concrete strut mechanism and truss mechanism. Finally, calculated results based on the proposed design model are compared with test data.

Experimental evaluation of external beam-column joints reinforced by deformed and plain bar

  • Adibi, Mahdi;Shafaei, Jalil;Aliakbari, Fatemeh
    • Earthquakes and Structures
    • /
    • 제18권1호
    • /
    • pp.113-127
    • /
    • 2020
  • In this study, the behavior of external beam-column joints reinforced by plain and deformed bars with non-seismic reinforcement details is investigated and compared. The beam-column joints represented in this study include a benchmark specimen by seismic details in accordance with ACI 318M-11 requirements and four other deficient specimens. The main defects of the non-seismic beam-column joints included use of plain bar, absence of transverse steel hoops, and the anchorage condition of longitudinal reinforcements. The experimental results indicate that using of plain bars in non-seismic beam-column joints has significantly affected the failure modes. The main failure mode of the non-seismic beam-column joints reinforced by deformed bars was the accumulation of shear cracks in the joint region, while the failure mode of the non-seismic beam-column joints reinforced by plain bars was deep cracks at the joint face and intersection of beam and column and there was only miner diagonal shear cracking at the joint region. In the other way, use of plain bars for reinforcing concrete can cause the behavior of the substructure to be controlled by slip of the beam longitudinal bars. The experimental results show that the ductility of non-seismic beam-column joints reinforced by plain bars has not decreased compared to the beam-column joints reinforced by deformed bars due to lack of mechanical interlock between plain bars and concrete. Also it can be seen a little increase in ductility of substructure due to existence of hooks at the end of the development length of the bars.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • 제9권3호
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.