• Title/Summary/Keyword: reinforced concrete joints

Search Result 321, Processing Time 0.033 seconds

Behavior of geopolymer and conventional concrete beam column joints under reverse cyclic loading

  • Raj, S. Deepa;Ganesan, N.;Abraham, Ruby;Raju, Anumol
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.161-172
    • /
    • 2016
  • An experimental investigation was carried out on the strength and behavior plain and fiber reinforced geopolymer concrete beam column joints and the results were compared with plain and steel fiber reinforced conventional concrete beam column joints. The volume fraction of fibers used was 0.5%. A total of six Geopolymer concrete joints and four conventional concrete joints were cast and tested under reversed cyclic loading to evaluate the performance of the joints. First crack load, ultimate load, energy absorption capacity, energy dissipation capacity stiffness degradation and moment-curvature relation were evaluated from the test results. The comparison of test results revealed that the strength and behavior of plain and fiber reinforced geopolymer concrete beam column joints are marginally better than corresponding conventional concrete beam column joints.

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • v.8 no.1
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

Behavior of exterior reinforced concrete beam-column joints including a new reinforcement

  • Fisher, Matthew J.;Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • v.40 no.6
    • /
    • pp.867-883
    • /
    • 2011
  • Six reinforced concrete beam-column joint specimens were constructed and tested under reverse cyclic loading to failure. The six specimens were divided into three groups, each group representing a different joint design. The main objectives of this study are to investigate the response of joints with three different design, reinforcement detailing and beam strengths, and to evaluate and compare the responses of beam-column joints reinforced with traditional steel rebar and a recently proposed steel reinforcement called prefabricated cage system (PCS). Each of the three test specimen designs included equivalent amount of steel reinforcement and had virtually identical details. The results of the research show that the PCS reinforced joints had a slightly higher strength and significantly larger deformation capacity than the equivalent rebar reinforced joints.

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • v.12 no.4
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.

Seismic behavior and strength of L-shaped steel reinforced concrete column-concrete beam planar and spatial joints

  • Chen, Zongping;Xu, Deyi;Xu, Jinjun;Wang, Ni
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.337-352
    • /
    • 2021
  • The study presented experimental and numerical investigation on the seismic performance of steel reinforced concrete (SRC) L-shaped column- reinforced concrete (RC) beam joints. Various parameters described as steel configuration form, axial compressive ratio, loading angle, and the existence of slab were examined through 4 planar joints and 7 spatial joints. The characteristics of the load-displacement response included the bearing capacity, ductility, story drift ratio, energy-dissipating capacity, and stiffness degradation were analyzed. The results showed that shear failure and flexural failure in the beam tip were observed for planar joints and spatial joint, respectively. And RC joint with slab failed with the plastic hinge in the slab and bottom of the beam. The results indicated that hysteretic curves of spatial joints with solid-web steel were plumper than those with hollow-web specimens. The capacity of planar joints was higher than that of space joints, while the opposite was true for energy-dissipation capacity and ductility. The high compression ratio contributed to the increase in capacity and initial stiffness of the joint. The elastic and elastic-plastic story deformation capacity of L-shaped column frame joints satisfied the code requirement. A design formula of joint shear resistance based on the superposition theory and equilibrium plasticity truss model was proposed for engineering application.

A Numerical Study on Flexure Performance of Enhanced Spun RC Pile with Reinforced Joint (원심성형 고성능 RC 말뚝의 이음부 보강에 대한 해석적 연구)

  • Joo, Sanghoon;Hwang, Hoonhee;Bae, Jaehyun;Lee, Jeehoon
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.70-77
    • /
    • 2018
  • In this study, the reinforced methods of joints were proposed to improve the structural performance of the enhanced spun reinforced concrete piles with joints. To verify the proposed methods, flexure performance was validated by finite element analysis considering both material and contact nonlinearity. Based on the previous study and those results of the analysis, it is concluded that the structural performance of the current joints system for the enhanced spun RC piles can be enhanced by applying the reinforced joints composed of extended circular band plates and studs. This proposed method showed the nearest structural behavior to the enhanced spun RC piles without joints. This numerical study will be used to further experimental study on the enhanced spun RC piles with reinforced joints.

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

Key factors affecting the shear behaviour of exterior RC beam-column joints

  • Ricardo, Costa;Paulo, Providencia
    • Structural Engineering and Mechanics
    • /
    • v.85 no.3
    • /
    • pp.353-367
    • /
    • 2023
  • An extended parametric study based on nonlinear finite element analyses is performed to assess the key factors affecting the shear behaviour of exterior beam-column joints of unbraced reinforced concrete frames. Extensive results are presented, the major conclusion being that the few shear behaviour models for exterior reinforced concrete beam-column joints available in the literature do not properly account for some of the most influential factors. The present results are also compared with recently published results for interior joints, showing that while some factors have a similar influence on interior and exterior joints others are relevant for only one of these types of joints. This also confirms, numerically, that some resisting mechanisms of exterior joints differ from those of interior joints.

Effect of horizontal joints on structural behavior of sustainable self-compacting reinforced concrete beams

  • Ibrahim, Omar Mohamed Omar;Heniegal, Ashraf Mohamed;Ibrahim, Khamis Gamal;Agwa, Ibrahim Saad
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.455-462
    • /
    • 2020
  • This study investigated the effect of horizontal casting joints on the mechanical properties and structural behavior of sustainable self-compacting reinforced concrete beams (SCRCB). The experimental research consisted of two stages. The first stage used four types of concrete mixtures which were produced to indicate the effects of cement replaced with cement waste at 0%, 5%, 10%, and 15% by weight of cement content on fresh concrete properties of self-compacting concrete (SCC) such as, passing ability, filling ability, and segregation resistance. In addition, mechanical properties such as compressive, tensile, and flexural strength were also studied. The second stage selected the best mixture from the first stage and studied the effect of horizontal casting joints on the structural behavior of sustainable SCRCBs. The effect of horizontal casting joints on the mechanical properties and structural behavior were at the 25%, 50%, 75%, and 100% of sample height. Load deflection, failure mode, and theoretical analysis were studied. Results indicated that the incorporation of replacement with cement waste by 5% to 10% led to economic and environmental advantages, and the results were acceptable for fresh and mechanical properties. The results indicated that delaying the time for casting the second layer and increasing the cement waste in concrete mixtures had a great effect on the mechanical properties of SCC. The ultimate load capacity of horizontal casting joints reinforced concrete beams slightly decreased compared with the control beam. The maximum deflection of casting joint beams with 75% of samples height is similar with the control beam. The experimental results of reinforced concrete beams were substantially acceptable with the theoretical results. The failure modes obtained the best forced casting joint on the structural behavior at 50% height of casting in the beam.

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • v.18 no.5
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.