• 제목/요약/키워드: reinforced concrete jackets

검색결과 42건 처리시간 0.02초

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.

Model for the evaluation of the beam-column joint ultimate strength -a more simplified version

  • Tsonos, Alexandros-Dimitrios G.
    • Earthquakes and Structures
    • /
    • 제16권2호
    • /
    • pp.141-148
    • /
    • 2019
  • In this study, a well-established model and a new simplified version of it, that help avoid collapses in reinforced concrete structures during strong earthquakes, are presented and discussed. Using this model, the initial formation of plastic hinges and the final concentration of the damages only in beams are accurately assured. The model also assures that the columns and the beam-column joints can remain intact. This model can be applied for the design of modern R/C structures, as well as for the design of strengthening schemes of old R/C structures by the use of reinforced concrete jackets. The model can also predict the form of earthquake damages in old structures but also earthquake damages in the modern structures.

Strengthening of non-seismically designed beam-column joints by ferrocement jackets with chamfers

  • Li, Bo;Lam, Eddie Siu-Shu;Cheng, Yuk-Kit;Wu, Bo;Wang, Ya-Yong
    • Earthquakes and Structures
    • /
    • 제8권5호
    • /
    • pp.1017-1038
    • /
    • 2015
  • This paper presents a strengthening method that involves the use of ferrocement jackets and chamfers to relocate plastic hinge for non-seismically designed reinforced concrete exterior beam-column joints. An experimental study was conducted to assess the effectiveness of the proposed strengthening method. Four half-scale beam-column joints, including one control specimen and three strengthened specimens, were prepared and tested under quasi-static cyclic loading. Strengthening schemes include ferrocement jackets with or without skeleton reinforcements and one or two chamfers. Experimental results have indicated that the proposed strengthening method is effective to move plastic hinge from the joint to the beam and enhance seismic performance of beam-column joints. Shear stress and distortion within the joint region are also reduced significantly in strengthened specimens. Skeleton reinforcements in ferrocement provide limited improvement, except on crack control. Specimen strengthened by ferrocement jackets with one chamfer exhibits slight decrease in peak strength and energy dissipation but with increase in ductility as compared with that of two chamfers. Finally, a method for estimating moment capacity at beam-column interface for strengthened specimen is developed. The proposed method gives reasonable prediction and can ensure formation of plastic hinge at predetermined location in the beam.

Rehabilitation of hospital buildings using passive control systems

  • Syrmakezis, C.A.;Mavrouli, O.A.;Antonopoulos, A.K.
    • Smart Structures and Systems
    • /
    • 제2권4호
    • /
    • pp.305-312
    • /
    • 2006
  • In the case of hospital buildings, where seismic design requirements are very high, existing structuresand especially those attacked by past earthquakes, appear, often, unable to fulfil the necessary safety prerequisites. In this paper, the retrofitting of hospital buildings is investigated, using alternative methods of repair and strengthening. Analysis of an existing hospital building in Patras, Greece, is performed. The load-bearing system is a reinforced concrete system. Two solutions are proposed: strengthening using concrete jackets around column and beam elements and application of viscoelastic dampers for the increase of the stability of the structure. Adequate finite element models are constructed for each case and conclusions are drawn on the efficiency of each rehabilitation method.

Effectiveness of CFRP jackets in post-earthquake and pre-earthquake retrofitting of beam-column subassemblages

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제27권4호
    • /
    • pp.393-408
    • /
    • 2007
  • This paper presents the findings of an experimental study to evaluate retrofit methods which address particular weaknesses that are often found in reinforced concrete structures, especially older structures, namely the lack of the required flexural and shear reinforcement within the columns and the lack of the required shear reinforcement within the joints. Thus, the use of a high-strength fiber jacket for cases of post-earthquake and pre-earthquake retrofitting of columns and beam-column joints was investigated experimentally. In this paper, the effectiveness of the two jacket styles was also compared.

Lateral force-displacement ductility relationship of non-ductile squat RC columns rehabilitated using FRP confinement

  • Galal, K.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.75-89
    • /
    • 2007
  • Post-earthquake reconnaissance and experimental research indicate that squat reinforced concrete (RC) columns in existing buildings or bridge piers are vulnerable to non-ductile shear failure. Recently, several experimental studies were conducted to investigate upgrading the shear resistance capacity of such columns in order to modify their failure mode to ductile one. Among these upgrading methods is the use of fibre-reinforced polymer (FRP) jackets. One of the preferred analytical tools to simulate the response of frame structures to earthquake loading is the lumped plasticity macromodels due to their computational efficiency and reasonable accuracy. In these models, the columns' nonlinear response is lumped at its ends. The most important input data for such type of models is the element's lateral force-displacement backbone curve. The objective of this study is to verify an analytical method to predict the lateral force-displacement ductility relationship of axially and laterally loaded rectangular RC squat columns retrofitted with FRP composites. The predicted relationship showed good accuracy when compared with tests available in the literature.

Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation

  • Gkournelos, Panagiotis D.;Bournas, Dionysios A.;Triantafillou, Thanasis C.
    • Earthquakes and Structures
    • /
    • 제16권5호
    • /
    • pp.625-639
    • /
    • 2019
  • The concept of the combined seismic and energy retrofitting of existing reinforced concrete (RC) buildings was examined in this paper through a number of case studies conducted on model buildings (simulating buildings of the '60s-'80s in southern Europe) constructed according to outdated design standards. Specifically, seismic and thermal analyses have been conducted prior to and after the application of selected retrofitting schemes, in order to quantify the positive effect that retrofitting could provide to RC buildings both in terms of their structural and energy performance. Advanced materials, namely the textile reinforced mortars (TRM), were used for providing seismic retrofitting by means of jacketing of masonry infills in RC frames. Moreover, following the application of the TRM jackets, thermal insulation materials were simultaneously provided to the RC building envelope, exploiting the fresh mortar used to bind the TRM jackets. In addition to the externally applied insulation material, all the fenestration elements (windows and doors) were replaced with new high energy efficiency ones. Afterwards, an economic measure, namely the expected annual loss (EAL) was used to evaluate the efficiency of each retrofitting method, but also to assess whether the combined seismic and energy retrofitting is economically feasible. From the results of this preliminary study, it was concluded that the selected seismic retrofitting technique can indeed enhance significantly the structural behaviour of an existing RC building and lower its EAL related to earthquake risks. Finally, it was found that the combined seismic and energy upgrading is economically more efficient than a sole energy or seismic retrofitting scenario for seismic areas of south Europe.

An interface model for the analysis of the compressive behaviour of RC columns strengthened by steel jackets

  • Minafo, Giovanni
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.233-244
    • /
    • 2019
  • Steel jacketing technique is a retrofitting method often employed for static and seismic strengthening of existing reinforced concrete columns. When no continuity is given to angle chords as they cross the floor, the jacket is considered "indirectly loaded", which means that the load acting on the column is transferred partially to the external jacket through interface shear stresses. The evaluation of load transfer mechanism between core and jacket is not straightforward to be modeled, due to the absence of knowledge of a proper constitutive law of the concrete-to-steel interface and to the difficulties in taking into account the mechanical nonlinearities of materials. This paper presents an incremental analytical/numerical approach for evaluating the compressive response of RC columns strengthened with indirectly loaded jackets. The approach allows calculating shear stresses at the interface between core and jacket and predicting the axial capacity of retrofitted columns. A proper constitutive law is proposed for modelling the interaction between the steel and the concrete. Based on plasticity rules and the non-linear behaviour of materials, the column is divided into portions. After a detailed parametric analysis, comparisons are finally made by theoretical predictions and experimental results available in the literature, showing a good agreement.

A retrofitting method for torsionally sensitive buildings using evolutionary algorithms

  • Efstathakis, Nikos C.;Papanikolaou, Vassilis K.
    • Earthquakes and Structures
    • /
    • 제12권3호
    • /
    • pp.309-319
    • /
    • 2017
  • A new method is suggested for the retrofitting of torsionally sensitive buildings. The main objective is to eliminate the torsional component from the first two natural modes of the structure by properly modifying its stiffness distribution via selective strengthening of its vertical elements. Due to the multi-parameter nature of this problem, state-of-art optimization schemes together with an ad-hoc software implementation were used for quantifying the required stiffness increase, determine the required retrofitting scheme and finally design and analyze the required composite sections for structural rehabilitation. The performance of the suggested method and its positive impact on the earthquake response of such structures is demonstrated through benchmark examples and applications on actual torsionally sensitive buildings.

Seismic repair of exterior R/C beam-to-column joints using two-sided and three-sided jackets

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제13권1호
    • /
    • pp.17-34
    • /
    • 2002
  • The use of local two-sided and three-sided jacketing for the repair and strengthening of reinforced concrete beam-column joints damaged by severe earthquakes is investigated experimentally and analytically. Two exterior beam-column joint specimens ($O_1$ and $O_2$) were submitted to a series of cyclic lateral loads to simulate severe earthquake damage. The specimens were typical of existing older structures built in the 1960s and 1970s. The specimens were then repaired and strengthened by local two-sided or three-sided jacketing according to UNIDO Manual guidelines. The strengthened specimens ($RO_1$ and $RO_2$) were then subjected to the same displacement history as that imposed on the original specimens. The repaired and strengthened specimens exhibited significantly higher strength, stiffness and better energy dissipation capacity than the original specimens.