• 제목/요약/키워드: reinforced concrete frame ductility

검색결과 119건 처리시간 0.018초

Energy absorption of fibrous self compacting reinforced concrete system

  • Senthil, K.;Satyanarayanan, K.S.;Rupali, S.
    • Advances in concrete construction
    • /
    • 제4권1호
    • /
    • pp.37-47
    • /
    • 2016
  • The objective of the present work is to evaluate the influence of two different methods of improving the ductility of Reinforced Concrete Frames and their influence on the full range behavior of the frames with M40 grade of concrete. For this purpose one fourth scale reinforced concrete square frames are experimentally tested subjected to static cyclic loading for three cases and monotonic loading for one case. The parameters are varied as method introducing ductility to the frame viz. (i) by using conventional concrete (ii) adding 1% of steel fibres by volume of concrete at hinging zones (iii) using self-compacting concrete with fibres at hinging zones. The energy absorption by ductile and non-ductile frames has been compared. The behavior of frames tested under cyclic loading have revealed that there is a positive trend in improvement of ductility of frames when fibrous concrete is used along with self-compacting concrete.

Analytical model for hybrid RC frame-steel wall systems

  • Mo, Y.L.;Perng, S.F.
    • Structural Engineering and Mechanics
    • /
    • 제16권2호
    • /
    • pp.127-139
    • /
    • 2003
  • Reinforced concrete buildings with shearwalls are very efficient to resist earthquake disturbances. In general, reinforced concrete frames are governed by flexure and shearwalls are governed by shear. If a structure included both frames and shearwalls, it is generally governed by shearwalls. However, the ductility of ordinary reinforced concrete is very limited. To improve the ductility, a series of tests on framed shearwalls made of corrugated steel was performed previously and the experimental results were compared with ordinary reinforced concrete frames and shearwalls. It was found that ductility of framed shearwalls could be greatly improved if the thickness of the corrugated steel wall is appropriate to the surrounding reinforced concrete frame. In this paper, an analytical model is developed to predict the horizontal load-displacement relationship of hybrid reinforced concrete frame-steel wall systems according to the analogy of truss models. This analytical model is based on equilibrium and compatibility conditions as well as constitutive laws of corrugated steel. The analytical predictions are compared with the results of tests reported in the previous paper. It is found that proposed analytical model can predict the test results with acceptable accuracy.

소규모 철근콘크리트 모멘트골조 건축물의 초과강도, 연성도 및 반응수정계수 (Over-Strength, Ductility and Response Modification Factor of Small-Size Reinforced Concrete Moment Frame Buildings)

  • 김태완;추유림;박홍근;신영수
    • 한국지진공학회논문집
    • /
    • 제20권3호
    • /
    • pp.145-153
    • /
    • 2016
  • Small-size buildings are not designed by professional structural engineers in Korea. Therefore, their seismic performance can not be exactly estimated because their member sizes and reinforcement may be over- or under-designed. A prescriptive design criteria for the small-size buildings exists, but it also provides over-designed structural members since structural analysis is not incorporated, so it is necessary to revise the prescriptive criteria. The goal of this study was to provide an information for the revision, which is seismic performance and capability of small-size reinforced concrete moment frame buildings. For the study, the state of existing small-size reinforce-concrete buildings such as member size and reinforcement was identified by investigating their structural drawings. Then, over-strength, ductility and response modification factor of the small-size reinforced concrete moment frame buildings were estimated by analytical approach along with seismic performance check. The result showed that they possess moderate over-strength and ductility, and may use slightly increased response modification factor.

반복 휭하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력 (Inelastic Behavior and Ductility Capacity of Reinforced Concrete Frame Subjected In Cyclic Lateral Load)

  • 김태훈;김운학;신현목
    • 콘크리트학회논문집
    • /
    • 제14권4호
    • /
    • pp.467-473
    • /
    • 2002
  • 본 연구는 반복 횡하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력을 파악하고 합리적이면서 경제적인 내진설계기준의 개발을 위한 자료를 제공하는데 그 목적이 있다. 사용된 프로그램은 철근콘크리트 구조물의 해석을 위한 RCAHEST이다. 재료적 비선형성에 대해서는 균열콘크리트에 대한 인장, 압축, 전단모델과 콘크리트 속에 있는 철근모델을 조합하여 고려하였다. 이에 대한 콘크리트의 균열모델로서는 분산균열모델을 사용하였다. 횡방향 구속철근으로 인한 강도의 증가 효과를 고려하였다. 두께가 서로 다른 부재간의 접합부에서 단면강성이 급변하기 때문에 생기는 국소적인 불연속변형을 고려하기 위한 경계면요소를 도입하였다. 또한, 같은 변위진폭에 있어서의 하중재하 회수에 의한 효과를 고려하였다. 본 연구에서는 반복 횡하중을 받는 철근콘크리트 골조의 비탄성 거동 및 연성능력의 파악을 위해 제안한 해석기법을 신뢰성 있는 연구자의 실험결과와 비교하여 그 타당성을 검증하였다.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Seismic performance of RC-column wrapped with Velcro

  • Kwon, Minho;Seo, Hyunsu;Kim, Jinsup
    • Structural Engineering and Mechanics
    • /
    • 제58권2호
    • /
    • pp.379-395
    • /
    • 2016
  • A seismic strengthening method using Velcro is proposed to improve the seismic performance of columns in RC frame structures. The proposed method was evaluated experimentally using three fabricated RC specimens. Velcro was wrapped around the columns of the RC-frame specimen to prevent concrete spall falling. The reinforcing performance of the Velcro was determined from comparison of results on seismic performance (i.e., strength, displacement, failure mode, displacement ductility capacity and amount of dissipated energy). As the displacement of the reinforced specimens was increased, the amount of dissipated energy increased drastically, and the displacement-ductility-capacity of the reinforced specimens also increased. The final failure mode of RC frame structure was changed. As a result, it was concluded that the proposed seismic strengthening method using Velcro could be used to increase the displacement ductility of RC columns, and could be used to change the final failure mode of RC-frame structures.

Experimental investigation of a frame retrofitted with carbon textile reinforced mortar

  • Sinan M., Cansunar;Kadir, Guler
    • Earthquakes and Structures
    • /
    • 제23권5호
    • /
    • pp.473-491
    • /
    • 2022
  • The research investigates experimentally the effect of confinement on structural behavior at the ends of beam-column in reinforced concrete (RC) frames. In the experimental study, five specimens consisting of 1/3-scaled RC frames having single-bay, representing the traditional deficiencies of existing buildings constructed without receiving proper engineering service is investigated. The RC frame specimens were produced to represent most of the existing buildings in Turkey that have damage potential. To decrease the probable damage to the existing buildings exposed to earthquakes, the carbon Textile Reinforced Mortar (TRM) strengthening technique (fully wrapping) was used on the ends of the RC frame elements to increase the energy dissipation and deformation capacity. The specimens were tested under reversed cyclic lateral loading with constant axial loads. They were constructed satisfying the weak column-strong beam condition and consisting of low-strength concrete, such as compressive strength of 15 MPa. The test results were compared and evaluated considering stiffness, strength, energy dissipation capacity, structural damping, ductility, and damage propagation in detail. Comprehensive investigations of these experimental results reveal that the strengthening of a brittle frame with fully-TRM wrapping with non-anchored was effective in increasing the stiffness, ductility, and energy dissipation capacities of RC bare frames. It was also observed that the frame-only-retrofitting with an infill wall is not enough to increase the ductility capacity. In this case, both the frame and infill wall must be retrofitted with TRM composite to increase the stiffness, lateral load carrying, ductility and energy dissipation capacities of RC frames. The presented strengthening method can be an alternative strengthening technique to enhance the seismic performance of existing or moderately damaged RC buildings.

Pushover Tests of 1:5 Scale 3-Story Reinforced Concrete Frames

  • Lee, Han-Seon;Woo, Sung-Woo;Heo, Yun-Sup;Seon, Jin-Gyu
    • KCI Concrete Journal
    • /
    • 제11권3호
    • /
    • pp.165-174
    • /
    • 1999
  • The objective of the research stated herein is to observe the elastic and inelastic behaviors and ultimate capacity of 1:5 scale 3-story reinforced concrete frame. Pushover tests were performed to 1:5 scale 3-story reinforced concrete frames with and without infilled masonry. To simulate the earthquake effect, the lateral force distribution was maintained by an inverted triang1e by using the whiffle tree. From the test results, the relation ships between the total lateral load and the roof drift, the distribution of column shears, the relation between story shear and story drift, and the angular rotations at the critical portions of structures were obtained. The effects of infilled masonry were investigated with regards to the stiffness, strength, and ductility of structures. Final collapse modes of structures with and without infilled masonry were compared.

  • PDF

Cyclic test for solid steel reinforced concrete frames with special-shaped columns

  • Liu, Zu Q.;Xue, Jian Y.;Zhao, Hong T.;Gao, Liang
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.317-331
    • /
    • 2014
  • An experimental study was performed to investigate the seismic performance of solid steel reinforced concrete (SRC) frames with special-shaped columns that are composed of SRC special-shaped columns and reinforced concrete beams. For this purpose, two models of two-bay and three-story frame, including an edge frame and a middle frame, were designed and tested. The failure process and patterns were observed. The mechanical behaviors such as load-displacement hysteretic loops and skeleton curves, load bearing capacity, drift ratio, ductility, energy dissipation and stiffness degradation of test specimens were analyzed. Test results show that the failure mechanism of solid SRC frame with special-shaped columns is the beam-hinged mechanism, satisfying the seismic design principle of "strong column and weak beam". The hysteretic loops are plump, the ductility is good and the capacity of energy dissipation is strong, indicating that the solid SRC frame with special-shaped columns has excellent seismic performance, which is better than that of the lattice SRC frame with special-shaped columns. The ultimate elastic-plastic drift ratio is larger than the limit value specified by seismic code, showing the high capacity of collapse resistance. Compared with the edge frame, the middle frame has higher carrying capacity and stronger energy dissipation, but the ductility and speed of stiffness degradation are similar. All these can be helpful to the designation of solid SRC frame with special-shaped columns.

철근콘크리트 골조의 내진보강을 위한 신기술 개발 (Development of Now Technique for Earthquake-Resistant Retrofit in Reinforced Concrete Frame)

  • 하기주;신종학;최민권;조용태;조용태;이상목;이영범
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2000년도 가을 학술발표회논문집(I)
    • /
    • pp.69-74
    • /
    • 2000
  • In this dissertation, experimental research was carried out to study the hysteretic behavior of reinforced concrete frame designed by high performance techniques, using carbon fiber plate, diagonal bracing system with or without steel frame. Experimental programs were carried to evaluate the structural performance of such test specimens, such as the hysteretic behavior, the maximum horizontal strength, crack propagation, and ductility etc. Specimens(RFCP, RFXB, RFXB-F), designed by the improvement of earthquake-resistant performance, were attained more load-carrying load-carrying capacity stable hysteretic behavior.

  • PDF