• Title/Summary/Keyword: reinforced concrete column-steel beam

Search Result 222, Processing Time 0.025 seconds

A Study on the Moment and Shear Resisting Performance of Steel Girder - R/C Column Connection (철골 보 - 철근콘크리트 기둥 접합부의 휨 및 전단 저항성능에 관한 연구)

  • Choi, Kwang Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.429-436
    • /
    • 2000
  • The composite system, which is consisted of the steel girder and reinforced concrete column has some advantages in the structural efficiency and the construction productivity by complementing the shortcomings between the two materials. This research is aimed at the development of the composite beam-column connection system by which the steel beam can be connected to the R/C column with smooth stress transfer. And, to ensure safety of this system, the tests of moment and shear resisting performance have been carried out for actual size specimen. From the test, the connection system has been preyed to take good resistance and stress transfer between steel girder and reinforced concrete column.

  • PDF

Cyclic loading test of abnormal joints in SRC frame-bent main building structure

  • Wang, Bo;Cao, Guorong;Yang, Ke;Dai, Huijuan;Qin, Chaogang
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.417-430
    • /
    • 2021
  • Due to functional requirements, SRC column-RC beam abnormal joints with characteristics of strong beam weak column, variable column section, unequal beam height and staggered height exist in the Steel reinforced concrete (SRC) frame-bent main building structure of thermal power plant (TPP). This paper presents the experimental results of these abnormal joints through cyclic loading tests on five specimens with scaling factor of 1/5. The staggered height and whether adding H-shaped steel in beam or not were changing parameters of specimens. The failure patterns, bearing capacity, energy dissipation and ductile performance were analyzed. In addition, the stress mechanism of the abnormal joint was discussed based on the diagonal strut model. The research results showed that the abnormal exterior joints occurred shear failure and column end hinge flexural failure; reducing beam height through adding H-shaped steel in the beam of abnormal exterior joint could improve the crack resistance and ductility; the abnormal interior joints with different staggered heights occurred column ends flexural failure; the joint with larger staggered height had the higher bearing capacity and stiffness, but lower ductility. The concrete compression strut mechanism is still applicable to the abnormal joints in TPP, but it is affected by the abnormal characteristics.

Seismic performance of prefabricated reinforced concrete column-steel beam sub-assemblages

  • Bai, Juju;Li, Shengcai
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.203-218
    • /
    • 2022
  • In this paper, quasi-static tests were carried out on three prefabricated reinforced concrete column-steel beam (RCS) sub-assemblages with floor slabs and one comparison specimen without floor slab. The effects of axial compression and floor slab on the seismic performance were studied, and finite element simulations were conducted using ABAQUS. The results showed that the failure of prefabricated RCS sub-assemblages with floor occurred as a joint beam and column failure mode, while failure of sub-assemblages without floor occurred due to beam plastic hinge formation. Compared to the prefabricated RCS sub-assemblages without floor slab, the overall stiffness of the sub-assemblages with floor slab was between 19.2% and 45.4% higher, and the maximum load bearing capacity increased by 26.8%. However, the equivalent viscosity coefficient was essentially unchanged. When the axial compression ratio increased from 0.24 to 0.36, the hysteretic loops of the sub-assemblages with floor became fuller, and the load bearing capacity, ductility, and energy dissipation capacity increased by 12.1%, 12.9% and 8.9%, respectively. Also, the initial stiffness increased by 10.2%, but the stiffness degradation accelerated. The proportion of column drift caused by beam end plastic bending and column end bending changed from 35% and 46% to 47% and 36%, respectively. Comparative finite element analyses indicated that the numerical simulation outcomes agreed well with the experimental results.

Finite element implementation of a steel-concrete bond law for nonlinear analysis of beam-column joints subjected to earthquake type loading

  • Fleury, F.;Reynouard, J.M.;Merabet, O.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.1
    • /
    • pp.35-52
    • /
    • 1999
  • Realistic steel-concrete bond/slip relationships proposed in the literature are usually uniaxial. They are based on phenomenological theories of deformation and degradation mechanisms, and various pull-out tests. These relationships are usually implemented using different analytical methods for solving the differential equations of bond along the anchored portion, for particular situations. This paper justifies the concepts, and points out the assumptions underlying the construction and use of uniaxial bond laws. A finite element implementation is proposed using 2-D membrane elements. An application example on an interior beam-column joint illustrates the possibilities of this approach.

Seismic behavior of rebar-penetrated joint between GCFST column and RGC beam

  • Li, Guochang;Fang, Chen;An, Yuwei;Zhao, Xing
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.547-567
    • /
    • 2015
  • The paper makes the experimental and finite-element-analysis investigation on the seismic behavior of the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam under low cyclic reversed loading. Two specimens are designed and conducted for the experiment to study the seismic behavior of the rebar-penetrated joint under cyclic loading. Then, finite element analysis models of the rebar-penetrated joint are developed using ABAQUS 6.10 to serve as the complement of the experiment and further analyze the seismic behavior of the rebar-penetrated joint. Finite element analysis models are also verified by the experimental results. Finally, the hysteretic performance, the bearing capacity, the strength degradation, the rigidity degradation, the ductility and the energy dissipation of the rebar-penetrated joint are evaluated in detail to investigate the seismic behavior of the rebar-penetrated joint through experimental results and finite element analysis results. The research demonstrates that the rebar-penetrated joint between gangue concrete filled steel tubular column and reinforced gangue concrete beam, with full and spindle-shaped load-displacement hysteretic curves, shows generally the high ductility and the outstanding energy-dissipation capacity. As a result, the rebar-penetrated joint exhibits the excellent seismic performance and meets the earthquake-resistant requirements of the codes in China. The research provides some references and suggestions for the application of the rebar-penetrated joint in the projects.

Evaluation on Cyclic Flexural Behavior of HSRC (Hybrid H-steel-reinforced Concrete) Beams Connected with Steel Columns (강재 기둥과 하이브리드 강재 보-RC 보 접합부의 반복 휨 거동 평가)

  • Kwon, Hyuck-Jin;Yang, Keun-Hyeok;Hong, Seung-Hyun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.291-298
    • /
    • 2017
  • The objective of the present study is to evaluate the cyclic flexural behavior of a hybrid H-steel-reinforced concrete (HSRC) beam at the connection with a H-steel column. The test parameter investigated was the configuration of dowel bars at the joint region of the HSRC beam. The HSRC beam was designed to have plastic hinge at the end of the H-steel beam rather than the RC beam section near the joint. All specimens showed a considerable ductile behavior without a sudden drop of th applied load, resulting in the displacement ductility ratio exceeding 4.6, although an unexpected premature welding failure occurred at the flanges of H-steel beams connecting to H-steel column. The crack propagation in the RC beam region, flexural strength, and ductility of HSRC beam system were insignificantly affected by the configuration of dowel bars. The flexural strength of HSRC beam system governed by the yielding of H-steel beam could be conservatively evaluated from the assumption of a perfect plasticity state along the section.

Shear Strength of Through Beam Type Beam-Column Joint composed of Reinforced Concrete Column and Steel Beam (보 관통형 RCS 접합부의 전단강도 평가)

  • Choi, Keun-Do;You, Young-Chan;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.4
    • /
    • pp.62-70
    • /
    • 2007
  • This paper reports an evaluation method on the shear strength of interior beam-column joints composed of steel beams and reinforced concrete columns(RCS). The shear strength is generally calculated by the sum of the nominal shear resistance of a steel web panel and concrete elements. In this paper, the shear strength is calculated based on the compression strut theory instead of compression field theory. Design equations presented herein are evaluated through comparison with existing experimental results. The comparisons between experimental and calculated results show an excellent agreement.

Prediction of deflection of high strength steel fiber reinforced concrete beams and columns

  • Kara, Ilker Fatih;Dundar, Cengiz
    • Computers and Concrete
    • /
    • v.9 no.2
    • /
    • pp.133-151
    • /
    • 2012
  • This paper presents an analytical procedure for the analysis of high strength steel fiber reinforced concrete members considering the cracking effect in the serviceability loading range. Modifications to a previously proposed formula for the effective moment of inertia are presented. Shear deformation effect is also taken into account in the analysis, and the variation of shear stiffness in the cracked regions of members has been considered by reduced shear stiffness model. The effect of steel fibers on the behavior of reinforced concrete members have been investigated by the developed computer program based on the aforementioned procedure. The inclusion of steel fibers into high strength concrete beams and columns enhances the effective moment of inertia and consequently reduces the deflection reinforced concrete members. The contribution of the shear deformation to the total vertical deflection of the beams is found to be lower for beams with fibers than that of beams with no fibers. Verification of the proposed procedure has been confirmed from series of reinforced concrete beam and column tests available in the literature. The analytical procedure can provide an accurate and efficient prediction of deflections of high strength steel fiber reinforced concrete members due to cracking under service loads. This procedure also forms the basis for the three dimensional analysis of frames with steel fiber reinforced concrete members.

Development of Beam-Column Connection for Green Rhamen Structural Apartment (공동주택 적용을 위한 친환경 라멘구조 접합부 개발)

  • Yoon, Tae-Ho;Hong, Won-Kee;Park, Seon-Chee;Yune, Dai-Young
    • KIEAE Journal
    • /
    • v.10 no.6
    • /
    • pp.159-165
    • /
    • 2010
  • The composite frame system suggested in this paper consists of steel reinforced concrete beam encased with structural tee and precast concrete column. This system has advantages such as reduction of materials, CO2 emissions and waste. To commercialize the new composite frame system, it is necessary to develop connections that can effectively connect each member. Therefore, a hybrid connection that has steel type connection and reinforced concrete together is utilized to connect easily at the composite frame system. To evaluate the structural performance of the composite frame system, an experimental investigation is presented. In this study, the flexural moment capacity of the composite frame was determined using the strain compatibility approach. The strain compatibility approach can be used to predict the flexural moment capacity at each limit state. As a result, all elements of the beam to column connection are represented to fully interact between each other. The specimens show errors of -1.9% in the yield limit state and 0.9% at the maximum load limit state. Also, testing shows that beam to column connections have characteristics of semi-rigid connection as per Eurocode 3.

Evaluation of Structural Behavior of Reinforced Concrete Exterior Beam-Column Joints with High-Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 외부 보-기둥 접합부의 거동 평가)

  • Lee, Bum-Sik;Kim, Kyung-Duk;Kim, Sang-Woo;Kim, Kil-Hee;Lee, Jung-Yoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.72-81
    • /
    • 2014
  • This paper reports the test results of reinforced concrete exterior beam-column joints with high-strength concrete. The main parameters of eight specimens were joint failure modes, the compressive strength of concrete, and the head shapes of steel bars. All specimens were designed according to ACI 352R-02 design recommendations. Two types of failure modes were considered; J-failure and BJ-failure. The longitudinal steel bars were anchored by 90 degree standard hooks or headed reinforcement. Experimental results indicated that the current ACI design recommendation limited by the compressive strength of concrete somewhat underestimated the strength of beam-column joints with high-strength concrete. In the specimens showed joint shear failure, the strength of beam-column joints with headed bars was approximately 10 percent higher than that of joints with 90 degree standard hooks.