• Title/Summary/Keyword: reinforced buildings

Search Result 835, Processing Time 0.024 seconds

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test (유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.13-22
    • /
    • 2015
  • In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Seismic Performance Evaluation of Seismic Strengthening Method using SRCF External Connection of Medium and Low-rise R/C Buildings (중·저층 철근콘크리트 건물의 SRCF 외부접합 내진보강공법의 내진성능 평가)

  • Lee, Kang-Seok;Jung, Jue-Seong;Lee, Jong-Kweon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.147-155
    • /
    • 2015
  • A new SRCF (Steel Reinforced Concrete Frame) external connection method for seismic strengthening of medium-and low-rise reinforced concrete buildings is reported in this paper. The SRCF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside building. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and deformation. Test results revealed that the proposed SRCF strengthening method installed in RC frame enhanced conspicuously the strength and deformation capacities, and the method can resist markedly under the large scaled earthquake intensity level.

Neural network based model for seismic assessment of existing RC buildings

  • Caglar, Naci;Garip, Zehra Sule
    • Computers and Concrete
    • /
    • v.12 no.2
    • /
    • pp.229-241
    • /
    • 2013
  • The objective of this study is to reveal the sufficiency of neural networks (NN) as a securer, quicker, more robust and reliable method to be used in seismic assessment of existing reinforced concrete buildings. The NN based approach is applied as an alternative method to determine the seismic performance of each existing RC buildings, in terms of damage level. In the application of the NN, a multilayer perceptron (MLP) with a back-propagation (BP) algorithm is employed using a scaled conjugate gradient. NN based model wasd eveloped, trained and tested through a based MATLAB program. The database of this model was developed by using a statistical procedure called P25 method. The NN based model was also proved by verification set constituting of real existing RC buildings exposed to 2003 Bingol earthquake. It is demonstrated that the NN based approach is highly successful and can be used as an alternative method to determine the seismic performance of each existing RC buildings.

Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.511-539
    • /
    • 2015
  • The main objective of this study is to analytically investigate the effectiveness of different strengthening solutions in upgrading the seismic performance of existing reinforced concrete (RC) buildings in Nepal. For this, four building models with different structural configurations and detailing were considered. Three possible rehabilitation solutions were studied, namely: (a) RC shear wall, (b) steel bracing, and (c) RC jacketing for all of the studied buildings. A numerical analysis was conducted with adaptive pushover and dynamic time history analysis. Seismic performance enhancement of the studied buildings was evaluated in terms of demand capacity ratio of the RC elements, capacity curve, inter-storey drift, energy dissipation capacity and moment curvature demand of the structures. Finally, the seismic safety assessment was performed based on standard drift limits, showing that retrofitting solutions significantly improved the seismic performance of existing buildings in Nepal.

An assessment of code designed, torsionally stiff, asymmetric steel buildings under strong earthquake excitations

  • Kyrkos, M.T.;Anagnostopoulos, S.A.
    • Earthquakes and Structures
    • /
    • v.2 no.2
    • /
    • pp.109-126
    • /
    • 2011
  • The inelastic earthquake response of non-symmetric, braced steel buildings, designed according to the EC3 (steel structures) and EC8 (earthquake resistant design) codes, is investigated using 1, 3 and 5-story models, subjected to a set of 10, two-component, semi-artificial motions, generated to match the design spectrum. It is found that in these buildings, the so-called "flexible" edge frames exhibit higher ductility demands and interstory drifts than the "stiff" edge frames. We note that the same results were reported in an earlier study for reinforced concrete buildings and are the opposite of what was predicted in several other studies based on the over simplified, hence very popular, one-story, shear-beam type models. The substantial differences in such demands between the two sides suggest a need for reassessment of the pertinent code provisions. In a follow up paper, a design modification will be introduced that can lead to a more uniform distribution of ductility demands in the elements of all building edges. This investigation is another step towards more rational design of non-symmetric steel buildings.

An Experimental Study on Seismic Capacity Improvement of Masonry Buildings by Glass Fiber Reinforced Methods (유리섬유보강에 의한 조적조 건축물의 내진 성능향상에 관한 실험 연구)

  • Cho, Sang-Min;Choi, Sung-Mo;Kwon, Ki-Hyuk;Lee, Su-Cheul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.2 s.13
    • /
    • pp.47-52
    • /
    • 2004
  • Whereas The masonry buildings are safe under gravity loads, most of the masonry buildings in Korea have many structural defects under a lateral load due to an earthquake acceleration. But there is no earthquake resistant design code for the Masonry in Korea. Therefore it may be necessary to be set up an seismic code and be suggested for reinforcing methods for existing masonry buildings. The purpose of this paper is to investigate seismic capacity of reinforced masonry buildings subjected to earthquake load. The typical two models of the masonry building in Korea are selected through a site investigation. On the basis of test results, the fiber reinforcing effect of the two models was considerable. The maximum base shear force and deformation capacity for RM were remarkably increased. It was found that the pier rocking failure was a dominant mode for the RM buildings during a seismic excitation.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

Reinforced concrete structures with damped seismic buckling-restrained bracing optimization using multi-objective evolutionary niching ChOA

  • Shouhua Liu;Jianfeng Li;Hamidreza Aghajanirefah;Mohammad Khishe;Abbas Khishe;Arsalan Mahmoodzadeh;Banar Fareed Ibrahim
    • Steel and Composite Structures
    • /
    • v.47 no.2
    • /
    • pp.147-165
    • /
    • 2023
  • The paper contrasts conventional seismic design with a design that incorporates buckling-restrained bracing in three-dimensional reinforced concrete buildings (BRBs). The suboptimal structures may be found using the multi-objective chimp optimization algorithm (MEN-ChOA). Given the constraints and dimensions, ChOA suffers from a slow convergence rate and tends to become stuck in local minima. Therefore, the ChOA is improved by niching and evolutionary operators to overcome the aforementioned problems. In addition, a new technique is presented to compute seismic and dead loads that include all of a structure's parts in an algorithm for three-dimensional frame design rather than only using structural elements. The performance of the constructed multi-objective model is evaluated using 12 standard multi-objective benchmarks proposed in IEEE congress on evolutionary computation. Second, MEN-ChOA is employed in constructing several reinforced concrete structures by the Mexico City building code. The variety of Pareto optimum fronts of these criteria enables a thorough performance examination of the MEN-ChOA. The results also reveal that BRB frames with comparable structural performance to conventional moment-resistant reinforced concrete framed buildings are more cost-effective when reinforced concrete building height rises. Structural performance and building cost may improve by using a nature-inspired strategy based on MEN-ChOA in structural design work.

Assessment of FEMA356 nonlinear static procedure and modal pushover analysis for seismic evaluation of buildings

  • Khoshnoud, Hamid Reza;Marsono, Kadir
    • Structural Engineering and Mechanics
    • /
    • v.41 no.2
    • /
    • pp.243-262
    • /
    • 2012
  • Nonlinear static analysis as an essential part of performance based design is now widely used especially at design offices because of its simplicity and ability to predict seismic demands on inelastic response of buildings. Since the accuracy of nonlinear static procedures (NSP) to predict seismic demands of buildings affects directly on the entire performance based design procedure, therefore lots of research has been performed on the area of evaluation of these procedures. In this paper, one of the popular NSP, FEMA356, is evaluated and compared with modal pushover analysis. The ability of these procedures to simulate seismic demands in a set of reinforced concrete (RC) buildings is explored with two level of base acceleration through a comparison with benchmark results determined from a set of nonlinear time history analyses. According to the results of this study, the modal pushover analysis procedure estimates seismic demands of buildings like inter story drifts and hinges plastic rotations more accurate than FEMA356 procedure.

Failure analysis of reinforced concrete frames with short column effect

  • Caglar, Naci;Mutlu, Mahir
    • Computers and Concrete
    • /
    • v.6 no.5
    • /
    • pp.403-419
    • /
    • 2009
  • Short column effect is cause to failure of columns which may result in severe damages or even collapse during earthquakes. The scope of the study is mainly to reveal the effect of short column on the holistic behaviour of the buildings. The nonlinear analysis of 31 different frame buildings containing short column problem are carried out using finite element method. The finite element models were selected by 2 bays and 3 stories. Since the short columns are generally seen in the first storey of the buildings, in the study, they are only constructed in the same storey. The adverse effect of the short column on the response of buildings was shown in terms of the total load factor and displacement capacity of building. The response of buildings in terms of ground storey displacements is presented in figures and discussed. It is revealed that if the window openings are constructed along the bays, the total load capacity is decreased 85% compared with reference model in which all of bays are filled with infill walls.