• 제목/요약/키워드: reinforced beam-column joint

검색결과 239건 처리시간 0.024초

Parametrical study of the behavior of exterior unreinforced concrete beam-column joints through numerical modeling

  • Silva, Matheus F.A.;Haach, Vladimir G.
    • Computers and Concrete
    • /
    • 제18권2호
    • /
    • pp.215-233
    • /
    • 2016
  • Exterior beam-column joints are structural elements that ensure connection between beams and columns. The joint strength is generally assumed to be governed by the structural element of lowest load capacity (beam or column), however, the joint may be the weakest link. The joint shear behavior is still not well understood due to the influence of several variables, such as geometry of the connection, stress level in the column, concrete strength and longitudinal beam reinforcement. A parametrical study based only on experiments would be impracticable and not necessarily exposes the failure mechanisms. This paper reports on a set of numerical simulations conducted in DIANA$^{(R)}$ software for the investigation of the shear strength of exterior joints. The geometry of the joints and stress level on the column are the variables evaluated. Results have led to empirical expressions that provide the shear strength of unreinforced exterior beam-column joints.

Influence of shear deformation of exterior beam-column joints on the quasi-static behavior of RC framed structures

  • Costa, Ricardo J.T.;Gomes, Fernando C.T.;Providencia, Paulo M.M.P.;Dias, Alfredo M.P.G.
    • Computers and Concrete
    • /
    • 제12권4호
    • /
    • pp.393-411
    • /
    • 2013
  • In the analysis and design of reinforced concrete frames beam-column joints are sometimes assumed as rigid. This simplifying assumption can be unsafe because it is likely to affect the distributions of internal forces and moments, reduce drift and increase the overall load-carrying capacity of the frame. This study is concerned with the relevance of shear deformation of beam-column joints, in particular of exterior ones, on the quasi-static behavior of regular reinforced concrete sway frames. The included parametric studies of a simple sub-frame model reveal that the quasi-static monotonic behavior of unbraced regular reinforced concrete frames is prone to be significantly affected by the deformation of beam-column joints.

Effects of joint aspect ratio on required transverse reinforcement of exterior joints subjected to cyclic loading

  • Chun, Sung Chul
    • Earthquakes and Structures
    • /
    • 제7권5호
    • /
    • pp.705-718
    • /
    • 2014
  • This paper presents an analytical model for determining the transverse reinforcement required for reinforced concrete exterior beam-column joints subjected to reversed cyclic loading. Although the joint aspect ratio can affect joint shear strength, current design codes do not consider its effects in calculating joint shear strength and the necessary amount of transverse reinforcement. This study re-evaluated previous exterior beam-column joint tests collected from 11 references and showed that the joint shear strength decreases as the joint aspect ratio increases. An analytical model was developed, to quantify the transverse reinforcement required to secure safe load flows in exterior beam-column joints. Comparisons with a database of exterior beam-column joint tests from published literature validated the model. The required sectional ratios of horizontal transverse reinforcement calculated by the proposed model were compared with those specified in ACI 352R-02. More transverse reinforcement is required as the joint aspect ratio increases, or as the ratio of vertical reinforcement decreases; however, ACI 352R-02 specifies a constant transverse reinforcement, regardless of the joint aspect ratio. This reevaluation of test data and the results of the analytical model demonstrate a need for new criteria that take the effects of joint aspect ratio into account in exterior joint design.

Interaction of internal forces of exterior beam-column joints of reinforced concrete frames under seismic action

  • Zhou, Hua;Zhang, Zhisheng
    • Structural Engineering and Mechanics
    • /
    • 제44권2호
    • /
    • pp.197-217
    • /
    • 2012
  • Detailed analysis of internal forces of exterior beam-column joints of RC frames under seismic action is reported in this paper. A formula is derived for calculating the average joint shear from the column shears, and a formula is proposed to estimate torque in eccentric joints induced by seismic action. Average joint shear stress and strain are defined consistently for exterior joints, which can be used to establish joint shear constitutive relationship. Numerical results of shear, bending moment and torque in joints induced by seismic action are presented for a pair of concentric and eccentric exterior connections extracted from a seismically designed RC frame, and two sections located at the levels of beam bottom and top reinforcement, respectively, are identified as the critical joint sections for evaluating seismic joint behavior. A simplified analysis of the effects of joint shear and torque on the flexural strengths of the critical joint sections is made for the two connections extracted from the frame, and the results indicate that joint shear and torque induced by a strong earthquake may lead to "joint-hinging" mechanism of seismically designed RC frames.

Seismic performance of RCS beam-column joints using fiber reinforced concrete

  • Nguyen, Xuan Huy;Le, Dang Dung;Nguyen, Quang-Huy;Nguyen, Hoang Quan
    • Earthquakes and Structures
    • /
    • 제18권5호
    • /
    • pp.599-607
    • /
    • 2020
  • This paper deals with the experimental investigation on the behavior of RCS beam-column exterior joints. Two full-scale specimens of joints between reinforced concrete columns and steel beams are tested under cyclic loading. The objective of the test is to study the effect of steel fiber reinforced concrete (SFRC) on the seismic behavior of RCS joints. The load bearing capacity, story drift capacity, ductility, energy dissipation, and stiffness degradation of specimens are evaluated. The experimental results point out that the FRC joint is increased 20% of load carrying capacity and 30% of energy dissipation capacity in comparison with the RC joint. Besides, the FRC joint shown lower damage and better ductility than RC joint.

Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam

  • Halahla, Abdulsamee M.;Tahnat, Yazan B. Abu;Dwaikat, Monther B.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.231-243
    • /
    • 2022
  • Beam-column joints (BCJs) are recognized among the most crucial zones in reinforced concrete structures, as they are the critical elements subjected to a complex state of forces during a severe earthquake. Under such conditions, BCJs exhibit behaviors with impacts that extend to the whole structure and significantly influence its ductility and capability of dissipating energy. The focus of this paper is to investigate the effect of undamaged transverse beam (secondary beams) on the ductility of concrete BCJs reinforced with conventional steel and shape memory alloys bars using pushover analysis at tip of beam under different axial load levels at the column using a nonlinear finite element model in ABAQUS environment. A numerical model of a BCJ was constructed and the analysis outcomes were verified by comparing them to those obtained from previous experiments found in the literature. The comparison evidenced the capability of the calibrated model to predict the load capacity response of the joint. Results proved the ability of undamaged secondary beams to provide a noticeable improvement to the ductility of reinforced concrete joints, with a very negligible loss in load capacity. However, the effect of secondary beams can become less significant if the beams are damaged due to seismic effects. In addition, the axial load was found to significantly enhance the performance of BCJs, where the increase in axial load magnified the capacity of the joint. However, higher values of axial load resulted in greater initial stiffness of the BCJ.

Finite element analysis of RC beam-column joints with high-strength materials

  • Noguchi, H.;Kashiwazaki, T.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.625-634
    • /
    • 1997
  • Reinforced concrete (RC) interior beam-column joints with high-strength materials: concrete compressive strength of 100 MPa and the yield strength of longitudinal bars of 685 MPa, were analyzed using three-dimensional (3-D) nonlinear finite element method (FEM). Specimen OKJ3 of joint shear failure type was a plane interior joint, and Specimen 12 of beam flexural failure type was a 3-D interior joint with transverse beams. Though the analytical initial stiffness was higher than experimental one, the analytical results gave a good agreement with the test results on the maximum story shear forces, the failure mode.

비부착 강연선과 고강도 콘크리트를 적용한 철근콘크리트 외부 접합부의 내진 거동 (Seismic Behavior of RC Beam-Column Exterior Joints with Unbonded Tendons and High Strength Concrete)

  • 권병운;강현구
    • 한국지진공학회논문집
    • /
    • 제19권6호
    • /
    • pp.283-292
    • /
    • 2015
  • In the moment frame subjected to earthquake loads, beam-column joint is structurally important for ductile behavior of a system. ACI Committee 352 proposed guidelines for designing beam-column joint details. The guidelines, however, need to be updated because of the lack of data regarding several factors that may improve the performance of joints. The purpose of this study is to investigate the seismic performance of reinforced concrete exterior joints with high-strength materials and unbonded tendons. Three specimens with different joint shear demand-to-strength ratios were constructed and tested, where headed bars were used to anchor the beam bars into the joint. All specimens showed satisfactory seismic behavior including moment strength of 1.3 times the nominal moment, ductile performance (ductility factor = at least 2.4), and sufficiently large dissipated energy.

Seismic behavior of steel and sisal fiber reinforced beam-column joint under cyclic loading

  • S.M. Kavitha;G. Venkatesan;Siva Avudaiappan;Chunwei Zhang
    • Structural Engineering and Mechanics
    • /
    • 제88권5호
    • /
    • pp.481-492
    • /
    • 2023
  • The past earthquakes revealed the importance of the design of moment-resisting reinforced concrete framed structures with ductile behavior. Due to seismic activity, failures in framed structures are widespread in beam-column joints. Hence, the joints must be designed to possess sufficient strength and stiffness. This paper investigates the effects of fibers on the ductility of hybrid fiber reinforced self-compacting concrete (HFRSCC) when subjected to seismic actions; overcoming bottlenecks at the beam-column joints has been studied by adding low modulus sisal fiber and high modulus steel fiber. For this, the optimized dose of hooked end steel fiber content (1.5%) was kept constant, and the sisal fiber content was varied at the rate of 0.1%, up to 0.3%. The seismic performance parameters, such as load-displacement behavior, ductility, energy absorption capacity, stiffness degradation, and energy dissipation capacity, were studied. The ductility factor and the cumulative energy dissipation capacity of the hybrid fiber (steel fiber, 1.5% and sisal fiber, 0.2%) added beam-column joint specimen is 100% and 121% greater than the control specimen, respectively. And also the stiffness of the hybrid fiber reinforced specimen is 100% higher than the control specimen. Thus, the test results showed that adding hybrid fibers instead of mono fibers could significantly enhance the seismic performance parameters. Therefore, the hybrid fiber reinforced concrete with 1.5% steel and 0.2% sisal fiber can be effectively used to design structures in seismic-prone areas.

Seismic design of beam-column joints in RC moment resisting frames - Review of codes

  • Uma, S.R.;Jain, Sudhir K.
    • Structural Engineering and Mechanics
    • /
    • 제23권5호
    • /
    • pp.579-597
    • /
    • 2006
  • The behaviour of reinforced concrete moment resisting frame structures in recent earthquakes all over the world has highlighted the consequences of poor performance of beam column joints. Large amount of research carried out to understand the complex mechanisms and safe behaviour of beam column joints has gone into code recommendations. This paper presents critical review of recommendations of well established codes regarding design and detailing aspects of beam column joints. The codes of practice considered are ACI 318M-02, NZS 3101: Part 1:1995 and the Eurocode 8 of EN 1998-1:2003. All three codes aim to satisfy the bond and shear requirements within the joint. It is observed that ACI 318M-02 requires smaller column depth as compared to the other two codes based on the anchorage conditions. NZS 3101:1995 and EN 1998-1:2003 consider the shear stress level to obtain the required stirrup reinforcement whereas ACI 318M-02 provides stirrup reinforcement to retain the axial load capacity of column by confinement. Significant factors influencing the design of beam-column joints are identified and the effect of their variations on design parameters is compared. The variation in the requirements of shear reinforcement is substantial among the three codes.