• 제목/요약/키워드: reinforced beam-column joint

검색결과 239건 처리시간 0.027초

Structural repairing of damaged reinforced concrete beam-column assemblies with CFRPs

  • Yurdakul, Ozgur;Avsar, Ozgur
    • Structural Engineering and Mechanics
    • /
    • 제54권3호
    • /
    • pp.521-543
    • /
    • 2015
  • Depending on the damage type as well as the level of damage observed after the earthquake, certain measures should be taken for the damaged buildings. In this study, structural repairing of two different types of damaged RC beam-column assembly by carbon fiber-reinforced polymer sheets is investigated in detail as a member repairing technique. Two types of 1:1 scale test specimens, which represent the exterior RC beam-column connection taken from inflection points of the frame, are utilized. The first specimen is designed according to the current Turkish Earthquake Code, whereas the second one represents a deficient RC beam-column assembly. Both of the specimens were subjected to cyclic quasistatic loading in the laboratory and different levels of structural damage were observed. The first specimen displayed a ductile response with the damage concentrated in the beam. However, in the second specimen, the beam-column joint was severely damaged while the rest of the members did not attain their capacities. Depending on the damage type of the specimens, the damaged members were repaired by CFRP wrapping with different configurations. After testing the repaired specimens, it is found that former capacities of the damaged members were mostly recovered by the application of CFRPs on the damaged members.

Improvement of the earthquake resistance of R/C beam-column joints under the influence of P-△ effect and axial force variations using inclined bars

  • Tsonos, Alexander G.
    • Structural Engineering and Mechanics
    • /
    • 제18권4호
    • /
    • pp.389-410
    • /
    • 2004
  • In this study, theoretical and experimental results are presented which were obtained during an investigation of the influence of the $P-{\Delta}$ effect that was caused by the simultaneous changing of the axial load P of the column and the lateral displacement ${\Delta}$ in the external beam-column joints. The increase or decrease of ${\Delta}$ was simultaneous with the increase or decrease of the axial compression load P and caused an additional influence on the aseismic mechanical properties of the joint. A total of 12 reinforced concrete exterior beam-column subassemblies were examined. A new model, which predicts the beam-column joint ultimate shear strength, was used in order to predict the seismic behaviour of beam-column joints subjected to earthquake-type loading plus variable axial load and $P-{\Delta}$ effect. Test data and analytical research demonstrated that axial load changes and $P-{\Delta}$ effect during an earthquake cause significant deterioration in the earthquake-resistance of these structural elements. It was demonstrated that inclined bars in the joint region were effective for reducing the unfavourable impact of the $P-{\Delta}$ effect and axial load changes in these structural elements.

Strengthening RC frames subjected to lateral load with Ultra High-Performance fiber reinforced concrete using damage plasticity model

  • Kota, Sai Kubair;Rama, J.S. Kalyana;Murthy, A. Ramachandra
    • Earthquakes and Structures
    • /
    • 제17권2호
    • /
    • pp.221-232
    • /
    • 2019
  • Material non-linearity of Reinforced Concrete (RC) framed structures is studied by modelling concrete using the Concrete Damage Plasticity (CDP) theory. The stress-strain data of concrete in compression is modelled using the Hsu model. The structures are analyzed using a finite element approach by modelling them in ABAQUS / CAE. Single bay single storey RC frames, designed according to Indian Standard (IS):456:2000 and IS:13920:2016 are considered for assessing their maximum load carrying capacity and failure behavior under the influence of gravity loads and lateral loads. It is found that the CDP model is effective in predicting the failure behaviors of RC frame structures. Under the influence of the lateral load, the structure designed according to IS:13920 had a higher load carrying capacity when compared with the structure designed according to IS:456. Ultra High Performance Fiber Reinforced Concrete (UHPFRC) strip is used for strengthening the columns and beam column joints of the RC frame individually against lateral loads. 10mm and 20mm thick strips are adopted for the numerical simulation of RC column and beam-column joint. Results obtained from the study indicated that UHPFRC with two different thickness strips acts as a very good strengthening material in increasing the load carrying capacity of columns and beam-column joint by more than 5%. UHPFRC also improved the performance of the RC frames against lateral loads with an increase of more than 3.5% with the two different strips adopted. 20 mm thick strip is found to be an ideal size to enhance the load carrying capacity of the columns and beam-column joints. Among the strengthening locations adopted in the study, column strengthening is found to be more efficient when compared with the beam column joint strengthening.

변형경화형 시멘트 복합체(SHCC)로 보-기둥 접합부 단면이 증설된 휨항복형 철근콘크리트 보의 구조성능 (Structural Performance of Flexural Dominant Reinforced Concrete Beams strengthened in Beam-Column Joint with SHCC)

  • 송선화;장광수;김윤수;김선우;김용철;윤현도
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2008년도 추계 학술발표회 제20권2호
    • /
    • pp.53-56
    • /
    • 2008
  • 대부분의 철근콘크리트 라멘 구조물은 지진하중 작용 시 가장 취약한 부분인 보-기둥 접합부 영역에서 큰 피해를 유발할 수 있다. 이러한 피해를 방지하기 위하여 보수 및 보강에 관한 연구가 이루어지고 있으며, 전 세계적으로 내진규정이 강화되고 구조물의 내진성능이 중요시되면서 지진에 효율적으로 저항할 수 있는 성능을 확보한 재료 개발이 증가되고 있다. 변형경화형 시멘트 복합체(Strain-hardening cementitious composite, SHCC)는 연성능력이 우수하여 보-기둥 접합부 영역에서 상당한 보강효과가 기대된다. 따라서 본 연구에서는 SHCC로 접합부를 보강한 철근콘크리트 보의 보강특성을 평가하고자 총 3개의 실험체를 제작하였다. 실험을 통하여 균열 및 파괴양상에 대하여 휨거동 특성을 평가하고 섬유 혼입률에 따른 SHCC의 보강효과에 대한 강도를 비교하였다.

  • PDF

Predicting shear strength of RC exterior beam-column joints by modified rotating-angle softened-truss model

  • Wong, Simon H.F.;Kuang, J.S.
    • Computers and Concrete
    • /
    • 제8권1호
    • /
    • pp.59-70
    • /
    • 2011
  • A theoretical model known as the modified rotating-angle softened-truss model (MRA-STM), which is a modification of Rotating-Angle Softened-Truss Model and Modified Compression Field Theory, is presented for the analysis of reinforced concrete membranes in shear. As an application, shear strength and behaviour of reinforced concrete exterior beam-column joints are analysed using the MRA-STM combining with the deep beam analogy. The joints are considered as RC panels and subjected to vertical and horizontal shear stresses from adjacent columns and beams. The strut and truss actions in a beam-column joint are represented by the effective transverse compression stresses and a softened concrete truss in the proposed model. The theoretical predictions of shear strength of reinforced concrete exterior beam-column joints from the proposed model show good agreement with the experimental results.

Seismic behavior of non-seismically designed eccentric reinforced concrete beam-column joints

  • Liu, Ying;Wong, Simon H.F.;Zhang, Hexin;Kuang, J.S.;Lee, Pokman;Kwong, Winghei
    • Earthquakes and Structures
    • /
    • 제21권6호
    • /
    • pp.613-625
    • /
    • 2021
  • Non-seismically designed eccentric reinforced concrete beam-column joints were extensively used in existing reinforced concrete frame buildings, which were found to be vulnerable to seismic action in many incidences. To provide a fundamental understanding of the seismic performance and failure mechanism of the joints, three 2/3-scale exterior beam-column joints with non-seismically designed details were cast and tested under reversed cyclic loads simulating earthquake excitation. In this investigation, particular emphasis was given on the effects of the eccentricity between the centerlines of the beam and the column. It is shown that the eccentricity had significant effects on the damage characteristics, shear strength, and displacement ductility of the specimens. In addition, shear deformation and the strain of joint hoops were found to concentrate on the eccentric face of the joint. The results demonstrated that the specimen with an eccentricity of 1/4 column width failed in a brittle manner with premature joint shear failure, while the other specimens with less or no eccentricity failed in a ductile manner with joint shear failure after beam flexural yielding. Test results are compared with those predicted by three seismic design codes and two non-seismic design codes. In general, the codes do not accurately predict the shear strength of the eccentric joints with non-seismic details.

Predicting the failure modes of monotonically loaded reinforced concrete exterior beam-column joints

  • Bakir, Pelin G.;Boduroglu, Hasan M.
    • Structural Engineering and Mechanics
    • /
    • 제14권3호
    • /
    • pp.307-330
    • /
    • 2002
  • This study aims at postulating a simple methodology for predicting the failure modes of monotonically loaded reinforced concrete beam-column joints. All the factors that affect the failure modes of joints are discussed in detail using an experimental database of monotonically loaded exterior beam-column joints. The relative contributions of the strut and truss mechanisms to joint shear strength are determined based on the test results. A simple design equation for the beam longitudinal reinforcement ratio for joints with low, medium and high amount of stirrups is developed. The factors influencing the failure modes of monotonically loaded exterior beam-column joints are investigated in detail. Design charts that predict the failure modes of exterior beam-column connections both with and without stirrups are developed. Experimental data are compared with the design charts. The results show that the simple methodology gives very accurate predictions of the failure modes.

이방향 하중을 받는 모서리 보-기둥 접합부의 내진성능 평가 (Testing of RC Corner Beam-column Joints under Bidirectional Loading)

  • 한상환;장용석;이창석
    • 한국지진공학회논문집
    • /
    • 제24권4호
    • /
    • pp.189-196
    • /
    • 2020
  • In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.

Finite element development of a Beam-column connection with CFRP sheets subjected to monotonic and cyclic loading

  • Rahimipour, Arash;Hejazi, Farzad;Vaghei, Ramin;Jaafar, Mohd Saleh
    • Computers and Concrete
    • /
    • 제18권6호
    • /
    • pp.1083-1096
    • /
    • 2016
  • Beam-column joints are recognized as the weak points of reinforcement concrete frames. The ductility of reinforced concrete (RC) frames during severe earthquakes can be measured through the dissipation of large energy in beam-column joint. Retrofitting and rehabilitating structures through proper methods, such as carbon fiber reinforced polymer (CFRP), are required to prevent casualties that result from the collapse of earthquake-damaged structures. The main challenge of this issue is identifying the effect of CFRP on the occurrence of failure in the joint of a cross section with normal ductility. The present study evaluates the retrofitting method for a normal ductile beam-column joint using CFRP under monotonic and cyclic loads. Thus, the finite element model of a cross section with normal ductility and made of RC is developed, and CFRP is used to retrofit the joints. This study considers three beam-column joints: one with partial CFRP wrapping, one with full CFRP wrapping, and one with normal ductility. The two cases with partial and full CFRP wrapping in the beam-column joints are used to determine the effect of retrofitting with CFRP wrapping sheets on the behavior of the beam-column joint confined by such sheets. All the models are subjected to monotonic and cyclic loading. The final capacity and hysteretic results of the dynamic analysis are investigated. A comparison of the dissipation energy graphs of the three connections shows significant enhancement in the models with partial and full CFRP wrapping. An analysis of the load-displacement curves indicates that the stiffness of the specimens is enhanced by CFRP sheets. However, the models with both partial and full CFRP wrapping exhibited no considerable improvement in terms of energy dissipation and stiffness.

반복하중을 받는 고강도 철근콘크리트 보-기둥 접합부의 구부림철근 효과에 관한 연구 (The Effects of Bent-up Bar on High Strength Reinforced Concrete Beam-Colum Joint Subjected to Cyclic Loads)

  • 신성우;이광수;오정근;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 봄 학술발표회 논문집
    • /
    • pp.61-65
    • /
    • 1990
  • The purpose of this study was to investigate the effect of Bent-up Bars in Beam-Column Joint with High-Strength Concrete up to 800 kg/$\textrm{cm}^2$. 5 specimens were tested under reversed cyclic loadings. The primary variables were the number of the Bented Bars with Joint Core, compressive strength and loading patterrns. The results showed that bent-up bars in beam-column joint prevented crack from extending into core but the failure was concreterated at the face of beam-column joint. Thus shear stress constant value(Г) should be revised for High Strength Concrete Beam-Column Joint with Bent-up Bars.

  • PDF