• 제목/요약/키워드: regulatory mutant

검색결과 157건 처리시간 0.024초

Interaction Between the Quorum Sensing and Stringent Response Regulation Systems in the Enterohemorrhagic Escherichia coli O157:H7 EDL933 Strain

  • Oh, Kyung-Hwan;Cho, Seung-Hak
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권3호
    • /
    • pp.401-407
    • /
    • 2014
  • Quorum sensing and the stringent response are well-known regulation systems for the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). However, how these two systems interact is not well known. E. coli strains with mutations in two regulation systems, ${\Delta}luxS$ (ECM101) and ${\Delta}luxS{\Delta}relA{\Delta}spoT$ (ECM201), and the ${\Delta}luxS$ complement strain to ECM201 (ECM202) were created from EHEC O157:H7 EDL933 to investigate how the regulatory systems interact. The phenotypic changes of the mutant strains were characterized and compared with the wild type. The mutant strains exhibited no obvious growth defects, although acid resistance and cellular cytotoxicity were decreased significantly in all the mutant strains. Phenotypic characterization revealed that mutations in the stringent response system (ECM201 and ECM202) influenced the metabolic (defective utilization of arabinose and L-sorbose) and enzymatic activities (decreased trypsin activity, and increased ${\alpha}$-glucosidase activity). In contrast, the quorum sensing system mutant (ECM101) did not display these phenotypes. The motility of the quorum sensing system mutant (ECM101) was unchanged, but mutation in the stringent response system influenced the motility. Our results suggest that quorum sensing interacts with the stringent response regulation system.

대장균 Leucine-Responsive Regulatory Protein의 정제 및 형광분광학적 특성 분석 (Purification and Fluorometric Analysis of Leucine-Responsive Regulatory Protein from Escherichia coli)

  • 이찬용;김성철;서초희
    • 미생물학회지
    • /
    • 제46권1호
    • /
    • pp.104-108
    • /
    • 2010
  • Leucine-responsive regulatory protein (Lrp)는 대장균 (Escherichia coli)에서 발견된 '글로벌 조절자(global regulator)'로서 Lrp-regulon이 leucine에 의하여 상이한 형태의 조절 양상을 나타낸다. 6XHis-tag 시스템으로 제조한 야생형 Lrp (Lrp Wt)와 돌연변이 Lrp (Lrp R145W) 단백질을 정제하여 그들의 생화학적 성질을 조사하였다. 이들은 gel retardation assay를 통하여 ilv 오페론의 프로모터 영역 consensus 염기서열인 21bp의 이중가닥 DNA와 결합하여 복합체를 형성하는 것을 확인 하였다. 형광성 아미노산인 tryptophan을 지닌 Lrp R145W은 단백질의 농도가 증가함에 따라 형광이 커졌으며, 아미노산 leucine에 의하여 형광성의 변화가 관찰되었다. 즉 1 ${\mu}M$의 Lrp R145W 단백질에 leucine을 첨가하여 결합시키면 약 20 ${\mu}M$까지는 형광이 증가하다가 그 이상의 농도에서는 감소하는 양상을 얻었다. 이들 실험 결과는 leucine과 Lrp의 결합 양상 및 구조변이에 관한 심층연구에 있어서 Lrp의 고유 형광성이 요긴하게 쓰일 수 있음을 시사한다.

Selection and Characterization of Catabolite Repression Resistant Mutant of Bacillus firmus var. alkalophilus Producing Cyclodextrin Glucanotransferase

  • Do, Eun-Ju;Shin, Hyun-Dong;Kim, Chan
    • Journal of Microbiology and Biotechnology
    • /
    • 제3권2호
    • /
    • pp.78-85
    • /
    • 1993
  • In order to elucidate the mechanism which regulates the production of cyclodextrin glucanotransferase (CGTase) and to achieve overproduction of CGTase by releasing catabolite (glucose) repression, several catabolite repression resistant mutants were selected from newly screened Bacillus firmus var. alkalophilus H609, after NTG (N-methyl-N -nitro-N-nitrosoguanidine) treatment, using 2-deoxyglucose as a nonmetabolizable analog of catabolite glucose and as a selection marker. Five catabolite repression resistant mutants were selected from about 30, 000 2-deoxyglucose resistant colonies. Relative catabolite repression indices of the selected mutants were in the range of 8~80% assuming 100% for parent strain. The amount of CGTase produced by the mutant strain CR41, which was 250 units/ml, was three times larger than that produced by its parent strain. The mutation seems to have occurred in the regulatory region of CGTase gene and not in the structural region or the glucose transporting system in cell membrane. The enzymatic properties of CGTase excreted from parent and mutant strains were also compared.

  • PDF

Isolation of the Regulator Gene Responsible for Overproduction of Catalase A in $H_2O$$_2$-resistant Mutant of Streptomyces coelicolor

  • Hahn, Ji-Sook;Oh, So-Young;Keith F. Chater;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제38권1호
    • /
    • pp.18-23
    • /
    • 2000
  • Streptomyces coelicolor produces three kinds of catalases to cope with oxidative stress and to allow normal differentiation. Catalase A is the major vegetative catalase which functions in removing hydrogen peroxide generated during the process of aerobic metabolism. To understand the regulatory mechanism of response against oxidative stress, hydrogen peroxide-resistant mutant (HR4O) was isolated from S. coelicolor J1501 following UV mutagenesis. The mutant overproduced catalase A more than 50-fo1d compared with the wild type. The mutation locus catRI was mapped closed to the mthB2 locus by genetic crossings. An ordered cosmid library of S. coelicolor encompassing the mthB2 locus was used to isolate the regulator gene (catR) which represses catalase overproduction when introduced into HR4O. A candidate catR gene was found to encode a Fur-like protein of 138 amino acids (15319 Da).

  • PDF

The RpoS Sigma Factor Negatively Regulates Production of IAA and Siderophore in a Biocontrol Rhizobacterium, Pseudomonas chlororaphis O6

  • Oh, Sang A;Kim, Ji Soo;Park, Ju Yeon;Han, Song Hee;Dimkpa, Christian;Anderson, Anne J.;Kim, Young Cheol
    • The Plant Pathology Journal
    • /
    • 제29권3호
    • /
    • pp.323-329
    • /
    • 2013
  • The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.

A two-component sensor kinase (GacS) mediated signal transduction pathway involved in production of antifungal compounds in Pseudomonas chlororaphis O6.

  • Kang, Beom-Ryong;Lee, Jung-Hoon;Kim, Hyun-Jung;Cho, Baik-Ho;Kim, Young-Cheol
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.99.1-100
    • /
    • 2003
  • E. intermedium Blocontrol activity of a P. chlororaphis rhizobacteium O6, depends to the synthesis of extracellular secondary metabolites and exoenzymes, thought to antagonize the pathogenicity of a variety of phytopathogenic fungi. The production of secondary metabolites and exoenzymes in O6, depends essentially on the GacS-mediated signal transduction pathway, which activates largely unknown signal transduction pathway. To exploit the GacS-mediated signal transdcution pathway involved in activation of ph genes that are necessary for biosynthesis of phenazine from P. chlororaphis O6, we cloned and sequenced the phz operon, rpoS gene encoding stationary specific sigma factor, ppx gene encoding polyphosphatase, and lon gene encoding ion protease. Expression of each gene in wild type and GacS mutant were analyzed by RT-PCR. Transcripts from rpoS, phzI enconing acylhomoserine lactone (AHL) synthase, and ph structural genes in the GacS mutant were reduced in each of these growth phases compared to the wild type. The GacS or Lon mutant was found to be deficient in the production of phenzines, exoenzymes, and the acylhomoserine lactone. These mutants were not complemented by ph operon and addition of exogenous AHL. These results indicate that the GacS global regulatory systems controls phenazine production at multiple levels. Future research will focus to identifying the GacS-mediated regulatory cascade involving in production of phenazine in P. chlororaphis.

  • PDF

Escherichia coli K-12 대사조절 변이주에 의한 L-페닐알라닌 생산 (L-Phenylalanine Production by Regulatory Mutants of Excherichia coli K-12)

  • 이새배;박청;원찬희;최덕호;임번삼
    • 미생물학회지
    • /
    • 제28권2호
    • /
    • pp.174-179
    • /
    • 1990
  • L-Phenylalanine을 대량생산하는 균주를 얻기 위하여 Escherichia coli K-12로부터 여러대사조절 변이주를 분리하였다. MWEC 83은 L-phenylalanine을 7.4 g/l 생산하는 tyrosine, tryptophan 이중 영양요구성 변이주이다. Tyrosine과 tryptop phan의 첨가없이 L-phenylalanine을 생산하기 위하여 MWEC 83으로부터 복기변이주 MWEC 101을 분리하였다. 또한 MWEC 101 균주로부터 여러 analog와 valine 내성주를 분리하였다. MWEC 101-5는 포도당 15%로 배양 54시간에 17.9 g/l의 L-phenylalanine을 생산하는 최고 우량균주이다. MWEC 101-5의 chorismate mutase와 prephenate dehydratase 효소환성은, 효소반응 혼합액 속에 2mM phenylalanine에 대하여 효소활성이 저해되지 않았다.

  • PDF

Role of Alkaline Serine Protease, Asp, in Vibrio alginolyticus Virulence and Regulation of Its Expression by LuxO-LuxR Regulatory System

  • Rui, Haopeng;Liu, Qin;Wang, Qiyao;Ma, Yue;Liu, Huan;Shi, Cunbin;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권5호
    • /
    • pp.431-438
    • /
    • 2009
  • The alkaline serine protease asp, which was shown to be a virulence factor of Vibrio alginolyticus as a purified protein, was cloned from V. alginolyticus EPGS, a strain recently isolated from moribund Epinephelus coioides in an outbreak of vibriosis in a mariculture farm of Shenzhen. The asp null mutant was constructed by homologous recombination with suicide plasmid pNQ705-1. Compared with the wild-type strain, the asp null mutant exhibited a significant decrease of total extracellular protease activity, and caused a IS-fold decrease in virulence of V. alginolyticus. In our previous study, the luxO and $luxR_{val}$ genes from V. alginolyticus MVP01 were cloned and identified, and the luxO-$luxR_{val}$ regulatory couple was shown to regulate various genes expression, suggesting that it played a central role in the quorum sensing system of V. alginolyticus. In this study, the regulation of the asp gene was analyzed by using RT-PCR and quantitative real-time PCR methods; we proved that its transcription was greatly induced at the late stage of growth and was regulated by a luxO-$luxR_{val}$ regulatory system.

Analysis of Salmonella Pathogenicity Island 1 Expression in Response to the Changes of Osmolarity

  • LIM, SANG-YONG;YONG, KYEONG-HWA;RYU, SANG-RYEOL
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권1호
    • /
    • pp.175-182
    • /
    • 2005
  • Abstract Salmonella pathogenicity island 1 (SPI1) gene expression is regulated by many environmental signals such as oxygen, osmolarity, and pH. Here, we examined changes in the expression level of various regulatory proteins encoded within SPI1 in response to three different concentrations of NaCl, using primer extension analysis. Transcription of all the regulatory genes tested was activated most when Salmonella were grown in Luria Broth (LB) containing 0.17 M NaCl. The expression of hilA, invF, and hilD was decreased in the presence of 0.47 M NaCl or in the absence of NaCl, while hilC expression was almost constant regardless of the NaCl concentration when Salmonella were grown to exponential phase under low-oxygen condition. The reduced expression of hilA, invF, and hilD resulted in lower invasion of hilC mutant to the cultured animal cells when the mutant was grown in the presence of 0.47 M NaCl or in the absence of NaCl prior to infection. Among the proteins secreted via the SPI1-type III secretion system (TTSS), the level of sopE2 expression was not influenced by medium osmolarity. Various effects of osmolarity on virulence gene regulation observed in this study is one example of multiple regulatory pathways used by Salmonella to cause infection.

트립토판 돌연변이 루신-반응 조절 단백질의 형광 특성 (Fluorescence Characteristics of a Tryptophan Mutant of Leucine-responsive Regulatory Protein (Lrp))

  • 로버트 포쿠;이의호;이찬용
    • 미생물학회지
    • /
    • 제50권4호
    • /
    • pp.275-280
    • /
    • 2014
  • 루신-반응 조절 단백질(Lrp)은 18.8 kDa의 분자량을 갖는 164개의 아미노산으로 이루어진 글로벌 조절 단백질으로서, 야생형의 단백질(Lrp Wt)에는 아미노산 중 가장 강한 자체 형광을 띠는 트립토판이 존재하지 않는다. Lrp 단백질의 구조변이에 대한 정보를 줄 수 있는 형광분석을 위하여 Lrp Wt과 트립토판이루신-반응 영역에 단지 하나 존재하는 돌연변이 단백질(Lrp R145W)을 분리 정제하였다. Lrp R145W 단백질은 이들 ilvIH 오페론에서 고안된 Lrp 결합 특정 DNA와 아미노산 루신과의 결합 후에 형광이 감소하였으며 acrylamide, urea 등에 의해서도 급격히 쇄광하는 양상을 보였다. 이들 형광 실험 결과는 Lrp의 3차원적 구조 및 배향을 연구에 중요한 정보를 제공하여 줄 수 있을 것이다.