• 제목/요약/키워드: regularized structured total least norm

검색결과 3건 처리시간 0.014초

A METHOD FOR STRUCTURED LINEAR TOTAL LEAST NORM ON BLIND DECONVOLUTION PROBLEM

  • Oh, Se-Young;Kwon, Sun-Joo;Yun, Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • 제19권1_2호
    • /
    • pp.151-164
    • /
    • 2005
  • The regularized structured total least norm (RSTLN) method finds an approximate solution x and error matrix E to the overdetermined linear system (H + E)x $\approx$ b, preserving structure of H. A new separation scheme by parts of variables for the regularized structured total least norm on blind deconvolution problem is suggested. A method combining the regularized structured total least norm method with a separation by parts of variables can be obtain a better approximated solution and a smaller residual. Computational results for the practical problem with Block Toeplitz with Toeplitz Block structure show the new method ensures more efficiency on image restoration.

A HYBRID METHOD FOR REGULARIZED STRUCTURED LINEAR TOTAL LEAST NORM

  • KWON SUNJOO
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.621-637
    • /
    • 2005
  • A hybrid method solving regularized structured linear total least norm (RSTLN) problems, which have highly ill-conditioned coefficient matrix with special structures, is suggested and analyzed. This scheme combining RSTLN algorithm and separation by parts guarantees the convergence of parameters and has an advantages in reducing the residual norm and relative error of solutions. Computational tests for problems arisen in signal processing and image formation process confirm that the presenting method is effective for more accurate solutions to (R)STLN problem than the (R)STLN algorithm.

A PARAMETER ESTIMATION METHOD FOR MODEL ANALYSIS

  • Oh Se-Young;Kwon Sun-Joo;Yun Jae-Heon
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.373-385
    • /
    • 2006
  • To solve a class of nonlinear parameter estimation problems, a method combining the regularized structured nonlinear total least norm (RSNTLN) method and parameter separation scheme is suggested. The method guarantees the convergence of parameters and has an advantages in reducing the residual norm over the use of RSNTLN only. Numerical experiments for two models appeared in signal processing show that the suggested method is more effective in obtaining solution and parameter with minimum residual norm.