• 제목/요약/키워드: regularized extreme learning machine

검색결과 2건 처리시간 0.017초

Crack identification in Timoshenko beam under moving mass using RELM

  • Kourehli, Seyed Sina;Ghadimi, Siamak;Ghadimi, Reza
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.279-288
    • /
    • 2018
  • In this paper, a new method has been proposed to detect crack in beam structures under moving mass using regularized extreme learning machine. For this purpose, frequencies of beam under moving mass used as input to train machine. This data is acquired by the analysis of cracked structure applying the finite element method (FEM). Also, a validation study used for verification of the FEM. To evaluate performance of the presented method, a fixed simply supported beam and two span continuous beam are considered containing single or multi cracks. The obtained results indicated that this method can provide a reliable tool to accurately identify cracks in beam structures under moving mass.

Prediction of carbon dioxide emissions based on principal component analysis with regularized extreme learning machine: The case of China

  • Sun, Wei;Sun, Jingyi
    • Environmental Engineering Research
    • /
    • 제22권3호
    • /
    • pp.302-311
    • /
    • 2017
  • Nowadays, with the burgeoning development of economy, $CO_2$ emissions increase rapidly in China. It has become a common concern to seek effective methods to forecast $CO_2$ emissions and put forward the targeted reduction measures. This paper proposes a novel hybrid model combined principal component analysis (PCA) with regularized extreme learning machine (RELM) to make $CO_2$ emissions prediction based on the data from 1978 to 2014 in China. First eleven variables are selected on the basis of Pearson coefficient test. Partial autocorrelation function (PACF) is utilized to determine the lag phases of historical $CO_2$ emissions so as to improve the rationality of input selection. Then PCA is employed to reduce the dimensionality of the influential factors. Finally RELM is applied to forecast $CO_2$ emissions. According to the modeling results, the proposed model outperforms a single RELM model, extreme learning machine (ELM), back propagation neural network (BPNN), GM(1,1) and Logistic model in terms of errors. Moreover, it can be clearly seen that ELM-based approaches save more computing time than BPNN. Therefore the developed model is a promising technique in terms of forecasting accuracy and computing efficiency for $CO_2$ emission prediction.