• Title/Summary/Keyword: regular domain

Search Result 191, Processing Time 0.04 seconds

Sparse reconstruction of guided wavefield from limited measurements using compressed sensing

  • Qiao, Baijie;Mao, Zhu;Sun, Hao;Chen, Songmao;Chen, Xuefeng
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.369-384
    • /
    • 2020
  • A wavefield sparse reconstruction technique based on compressed sensing is developed in this work to dramatically reduce the number of measurements. Firstly, a severely underdetermined representation of guided wavefield at a snapshot is established in the spatial domain. Secondly, an optimal compressed sensing model of guided wavefield sparse reconstruction is established based on l1-norm penalty, where a suite of discrete cosine functions is selected as the dictionary to promote the sparsity. The regular, random and jittered undersampling schemes are compared and selected as the undersampling matrix of compressed sensing. Thirdly, a gradient projection method is employed to solve the compressed sensing model of wavefield sparse reconstruction from highly incomplete measurements. Finally, experiments with different excitation frequencies are conducted on an aluminum plate to verify the effectiveness of the proposed sparse reconstruction method, where a scanning laser Doppler vibrometer as the true benchmark is used to measure the original wavefield in a given inspection region. Experiments demonstrate that the missing wavefield data can be accurately reconstructed from less than 12% of the original measurements; The reconstruction accuracy of the jittered undersampling scheme is slightly higher than that of the random undersampling scheme in high probability, but the regular undersampling scheme fails to reconstruct the wavefield image; A quantified mapping relationship between the sparsity ratio and the recovery error over a special interval is established with respect to statistical modeling and analysis.

Sound Enhancement of low Sample rate Audio Using LMS in DWT Domain (DWT영역에서 LMS를 이용한 저 샘플링 비율 오디오 신호의 음질 향상)

  • 백수진;윤원중;박규식
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2004
  • In order to mitigate the problems in storage space and network bandwidth for the full CD quality audio, current digital audio is always restricted by sampling rate and bandwidth. This restriction normally results in low sample rate audio or calls for the data compression scheme such as MP3. However, they can only reproduce a lower frequency range than a regular CD quality because of the Nyquist sampling theory. Consequently they lose rich spatial information embedded in high frequency. The propose of this paper is to propose efficient high frequency enhancement of low sample rate audio using n adaptive filtering and DWT analysis and synthesis. The proposed algorithm uses the LMS adaptive algorithm to estimate the missing high frequency contents in DWT domain and it then reconstructs the spectrally enhanced audio by using the DWT synthesis procedure. Several experiments with real speech and audio are performed and compared with other algorithm. From the experimental results of spectrogram and sonic test, we confirm that the proposed algorithm outperforms the other algorithm and reasonably works well for the most of audio cases.

Study of fission gas products effect on thermal hydraulics of the WWER1000 with enhanced subchannel method

  • Bahonar, Majid;Aghaie, Mahdi
    • Advances in Energy Research
    • /
    • v.5 no.2
    • /
    • pp.91-105
    • /
    • 2017
  • Thermal hydraulic (TH) analysis of nuclear power reactors is utmost important. In this way, the numerical codes that preparing TH data in reactor core are essential. In this paper, a subchannel analysis of a Russian pressurized water reactor (WWER1000) core with enhanced numerical code is carried out. For this, in fluid domain, the mass, axial and lateral momentum and energy conservation equations for desired control volume are solved, numerically. In the solid domain, the cylindrical heat transfer equation for calculation of radial temperature profile in fuel, gap and clad with finite difference and finite element solvers are considered. The dependence of material properties to fuel burnup with Calza-Bini fuel-gap model is implemented. This model is coupled with Isotope Generation and Depletion Code (ORIGEN2.1). The possibility of central hole consideration in fuel pellet is another advantage of this work. In addition, subchannel to subchannel and subchannel to rod connection data in hexagonal fuel assembly geometry could be prepared, automatically. For a demonstration of code capability, the steady state TH analysis of a the WWER1000 core is compromised with Thermal-hydraulic analysis code (COBRA-EN). By thermal hydraulic parameters averaging Fuel Assembly-to-Fuel Assembly method, the one sixth (symmetry) of the Boushehr Nuclear Power Plant (BNPP) core with regular subchannels are modeled. Comparison between the results of the work and COBRA-EN demonstrates some advantages of the presented code. Using the code the thermal modeling of the fuel rods with considering the fission gas generation would be possible. In addition, this code is compatible with neutronic codes for coupling. This method is faster and more accurate for symmetrical simulation of the core with acceptable results.

An Improved Active Damping Method with Capacitor Current Feedback

  • Geng, Yi-Wen;Qi, Ya-Wen;Liu, Hai-Wei;Guo, Fei;Zheng, Peng-Fei;Li, Yong-Gang;Dong, Wen-Ming
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.511-521
    • /
    • 2018
  • Proportional capacitor current feedback active damping (CCFAD) has a limited valid damping region in the discrete time domain as (0, $f_s/6$. However, the resonance frequency ($f_r$) of an LCL-type filter is usually designed to be less than half the sampling frequency ($f_s$) with the symmetry regular sampling method. Therefore, ($f_s/6$, $f_s/2$) becomes an invalid damping region. This paper proposes an improved CCFAD method to extend the valid damping region from (0, $f_s/6$ to (0, $f_s/2$), which covers all of the possible resonance frequencies in the design procedure. The full-valid damping region is obtained and the stability margin of the system is analyzed in the discrete time domain with the Nyquist criterion. Results show that the system can operate stably with the proposed CCFAD method when the resonance frequency is in the region (0, $f_s/2$). The performances at the steady and dynamic state are enhanced by the selected feedback coefficient H and controller gain $K_p$. Finally, the feasibility and effectiveness of the proposed CCFAD method are verified by simulation and experimental results.

Knowledge Level and Compliance of Health Behavior in Patients with Myocardial Infarction (심근 경색증 환자의 질병관련 지식과 건강행위 이행)

  • Jeong Hye-Sun;Yoo Yang-Sook
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.8 no.3
    • /
    • pp.334-345
    • /
    • 2001
  • Purpose : This study purposes to examine the knowledge level and compliance of health behavior in patients with myocardial infarction to develope a cardiac rehabilitation program. Method: The subjects consisted of 72 patients with myocardial infarction, hospitalized at three university-affiliated hospitals. The data were collected by interviewing their subjects using a questionnaire and reviewing the medical records from September 15, 1999 to July 31, 2000. Data were analyzed using the SAS program for Windows version 6.12. Results: 1 The average knowledge score of the patients was 19.7 and the average compliance score was 53.9. 2. Knowledge scores were highest in the items of avoiding overeating and taking medicine at prescribed dosage, and lowest in the item of when to avoid sexual activity. 3. Knowledge level were highest on domains of exercise & daily activities, and risk factors and followed by diet. medication. and nature of disease. 4. Those who had higher education, or were living with a spouse were significantly higher in knowledge score. 5. Compliance score was highest in the item of smoking cessation and lowest in the item of measuring heart rate regularly. 6. Compliance score was highest on domain of smoking cessation and followed by diet, exercise, others, and managing mental stress. 7. Female patients had significantly higher compliance scores of health behavior on domain of diet than male patients. 8. The knowledge score was positively correlated to compliance of health behaviors. Conclusion: According to the above findings, it can be concluded that intensive nursing care and education should be provided to the patients who have lower education or are living without a spouse. Also, nursing intervention should be developed to increase compliance of managing mental stress and doing regular exorcise.

  • PDF

A Theory of the Geological Magnetic Filter for the Improvement of the Signal to Noise Ratio of the Magnetic Detection System (자기 이상검출 시스템의 신호 대 잡음비 개선을 위한 자기환경 필터 이론)

  • Kim, Won-Ho;Kim, Eun-Ro;Yang, Chang-Sub;Choi, In-Kyu;Choi, Jun-Rim;Park, Jong-Sik
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.6
    • /
    • pp.458-465
    • /
    • 1997
  • In this paper, a theory of the geological magnetic filter for the improvements of the signal to noise ratio of the magnetic detection system has been developed. The geological magnetic filter takes two sequences of magnetic fields measured from the reference sensor and the detector sensor and calculate the correlations between them in the frequency domain. Using the filter, we can remove the coherent noises in the time domain and improve the signal to noise ratio of the magnetic detection system. With the recent developments of the DSP hardware technology the geological magnetic filter can be easily implemented using the digital signal processor. We show the ability of the geological magnetic filter under various circumstances through computer simulations. Numerical simulation results show that geological magnetic filter can excellently remove the sensor misalignment effects and the regular short range local noise as well as it delete the coherent noises.

  • PDF

Analysis of Camera Operation in MPEG2 Compressed Domain Using Generalized Hough Transform Technique (일반화된 Hough 변환기법을 이용한 MPEG2 압축영역에서의 카메라의 움직임 해석)

  • Yoo, Won-Young;Choi, Jeong-Il;Lee, Joon-Whoan
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11
    • /
    • pp.3566-3575
    • /
    • 2000
  • In this paper, we propose an simple and efficient method to estunate the camera operation by using compressed information, which is extracted diracily from MPEG2 stream without complete decoding. In the method, the motion vector is converted into approximate optical flow by using the feature of predicted frame, because the motion vector in MPEG2 video stream is not regular sequene. And they are used to estimate the camera operation, which consist of pan, and zoom by Hough transform technique. The method provided better results than the least square method for video stream of basketball and socer games. The proposed method can have a reduced computational complexity because the information is directiv abtained in compressed domain. Additionally it can be a useful technology in content-based searching and analysis of video information. Also, the estimatd cameral operationis applicable in searching or tracking objects in MPEG2 video stream without decoding.

  • PDF

Effects of Grain Size Distribution on the Mechanical Properties of Polycrystalline Graphene

  • Park, Youngho;Hyun, Sangil
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.6
    • /
    • pp.506-510
    • /
    • 2017
  • One of the characteristics of polycrystalline graphene that determines its material properties is grain size. Mechanical properties such as Young's modulus, yield strain and tensile strength depend on the grain size and show a reverse Hall-Petch effect at small grain size limit for some properties under certain conditions. While there is agreement on the grain size effect for Young's modulus and yield strain, certain MD simulations have led to disagreement for tensile strength. Song et al. showed a decreasing behavior for tensile strength, that is, a pseudo Hall-Petch effect for the small grain size domain up to 5 nm. On the other hand, Sha et al. showed an increasing behavior, a reverse Hall-Petch effect, for grain size domain up to 10 nm. Mortazavi et al. also showed results similar to those of Sha et al. We suspect that the main difference of these two inconsistent results is due to the different modeling. The modeling of polycrystalline graphene with regular size and (hexagonal) shape shows the pseudo Hall-Petch effect, while the modeling with random size and shape shows the reverse Hall-Petch effect. Therefore, this study is conducted to confirm that different modeling is the main reason for the different behavior of tensile strength of the polycrystalline structures. We conducted MD simulations with models derived from the Voronoi tessellation for two types of grain size distributions. One type is grains of relatively similar sizes; the other is grains of random sizes. We found that the pseudo Hall-Petch effect and the reverse Hall-Petch effect of tensile strength were consistently shown for the two different models. We suspect that this result comes from the different crack paths, which are related to the grain patterns in the models.

Numerical and Experimental Study on Linear Behavior of Salter's Duck Wave Energy Converter (비대칭 형상 파력발전 로터의 선형 거동에 대한 수치적·실험적 연구)

  • Kim, Dongeun;Poguluri, Sunny Kumar;Ko, Haeng Sik;Lee, Hyebin;Bae, Yoon Hyeok
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.116-122
    • /
    • 2019
  • Among the various wave power systems, Salter's duck (rotor) is one of the most effective wave absorbers for extracting wave energy. The rotor shape is designed such that the front part faces the direction of the incident wave, which forces it to bob up and down due to wave-induced water particle motion, whereas the rear part, which is mostly circular in shape, reflects no waves. The asymmetric geometric shape of the duck makes it absorb energy efficiently. In the present study, the rotor was investigated using WAMIT (a program based on the linear potential flow theory in three-dimensional diffraction/radiation analyses) in the frequency domain and verified using OrcaFlex (design and analysis program of marine system) in the time domain. Then, an experimental investigation was conducted to assess the performance of the rotor motion based on the model scale in a two-dimensional (2D) wave tank. Initially, a free decay test (FDT) was carried out to obtain the viscous damping coefficient. The pitch response was extracted from the experimental time series in a periodic regular wave for two different wave heights (1 cm and 3 cm). In addition, the viscous damping coefficient was calculated from the FDT result and fluid forces, obtained from WAMIT, are incorporated into the final response of the rotor. Finally, a comparative study based on experimental and numerical results (WAMIT & OrcaFlex) was performed to confirm the performance reliability of the designed rotor.

Investigation on the Variation of Ocean Waves passing through Shallow Waters (낮은 수심을 통과하는 해양파의 변화에 대한 연구)

  • Seok, Woochan;Won, Younsang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.161-167
    • /
    • 2022
  • Ocean waves passing through the underwater bar at a shallow depth experience a shoaling effect caused by decreasing water depth, a nonlinear interaction therein owing to steepening wave slope, and a wave dispersion effect as the water depth increases again. Because this problem includes many complicated phenomena, it is used as a good example of validating a theoretical development or a CFD method for ocean wave applications. Validation is performed mainly for regular waves by comparing the wave elevation patterns in the time domain with the experimental results. In this study, the spectral evolution of wave spectrum is investigated in the frequency domain when a CFD method such as OpenFOAM is applied for this problem. In particular, the effects of initial phase conditions as well as the nonlinear interaction among harmonic waves are studied.