• Title/Summary/Keyword: regressor

Search Result 55, Processing Time 0.022 seconds

The Impact of Climate Factors, Disaster, and Social Community in Rural Development

  • FARADIBA, Faradiba;ZET, Lodewik
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.9
    • /
    • pp.707-717
    • /
    • 2020
  • Global warming affects climate change and has an overall impact on all aspects of life. On the other hand, community behavior and disaster aspects also have an important role in people's lives. This will also have an impact on regional development. This study aims to find the effect of climate, disaster, and social community on rural development. This study uses data on the potential of rural development from PODES 2014, and 2018 data collection on climate conditions and regional status is sourced from relevant ministries. This research uses Ordinary Least Square (OLS) Regression Analysis method, then continued with CHAID analysis to find the segmentation of the role of climate, disaster, and social factors on rural development. The results of this study found that all research regressor variables significantly influence the Rural Development Index (IPD2018), with an R-squared value of 32.9 percent. Efforts need to be taken in order to implement policies that are targeted, effective, and efficient. The results of this study can be a reference for the government in determining policies by focusing on rural development that have high duration of sunshine, cultivating natural disaster warnings, especially in areas prone to natural disasters, and need to focus on underdeveloped areas.

A gradient boosting regression based approach for energy consumption prediction in buildings

  • Bataineh, Ali S. Al
    • Advances in Energy Research
    • /
    • v.6 no.2
    • /
    • pp.91-101
    • /
    • 2019
  • This paper proposes an efficient data-driven approach to build models for predicting energy consumption in buildings. Data used in this research is collected by installing humidity and temperature sensors at different locations in a building. In addition to this, weather data from nearby weather station is also included in the dataset to study the impact of weather conditions on energy consumption. One of the main emphasize of this research is to make feature selection independent of domain knowledge. Therefore, to extract useful features from data, two different approaches are tested: one is feature selection through principal component analysis and second is relative importance-based feature selection in original domain. The regression model used in this research is gradient boosting regression and its optimal parameters are chosen through a two staged coarse-fine search approach. In order to evaluate the performance of model, different performance evaluation metrics like r2-score and root mean squared error are used. Results have shown that best performance is achieved, when relative importance-based feature selection is used with gradient boosting regressor. Results of proposed technique has also outperformed the results of support vector machines and neural network-based approaches tested on the same dataset.

Pyramidal Deep Neural Networks for the Accurate Segmentation and Counting of Cells in Microscopy Data

  • Vununu, Caleb;Kang, Kyung-Won;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.3
    • /
    • pp.335-348
    • /
    • 2019
  • Cell segmentation and counting represent one of the most important tasks required in order to provide an exhaustive understanding of biological images. Conventional features suffer the lack of spatial consistency by causing the joining of the cells and, thus, complicating the cell counting task. We propose, in this work, a cascade of networks that take as inputs different versions of the original image. After constructing a Gaussian pyramid representation of the microscopy data, the inputs of different size and spatial resolution are given to a cascade of deep convolutional autoencoders whose task is to reconstruct the segmentation mask. The coarse masks obtained from the different networks are summed up in order to provide the final mask. The principal and main contribution of this work is to propose a novel method for the cell counting. Unlike the majority of the methods that use the obtained segmentation mask as the prior information for counting, we propose to utilize the hidden latent representations, often called the high-level features, as the inputs of a neural network based regressor. While the segmentation part of our method performs as good as the conventional deep learning methods, the proposed cell counting approach outperforms the state-of-the-art methods.

A Novel Approach to Predict the Longevity in Alzheimer's Patients Based on Rate of Cognitive Deterioration using Fuzzy Logic Based Feature Extraction Algorithm

  • Sridevi, Mutyala;B.R., Arun Kumar
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.79-86
    • /
    • 2021
  • Alzheimer's is a chronic progressive disease which exhibits varied symptoms and behavioural traits from person to person. The deterioration in cognitive abilities is more noticeable through their Activities and Instrumental Activities of Daily Living rather than biological markers. This information discussed in social media communities was collected and features were extracted by using the proposed fuzzy logic based algorithm to address the uncertainties and imprecision in the data reported. The data thus obtained is used to train machine learning models in order to predict the longevity of the patients. Models built on features extracted using the proposed algorithm performs better than models trained on full set of features. Important findings are discussed and Support Vector Regressor with RBF kernel is identified as the best performing model in predicting the longevity of Alzheimer's patients. The results would prove to be of high value for healthcare practitioners and palliative care providers to design interventions that can alleviate the trauma faced by patients and caregivers due to chronic diseases.

Forecasting tunnel path geology using Gaussian process regression

  • Mahmoodzadeh, Arsalan;Mohammadi, Mokhtar;Abdulhamid, Sazan Nariman;Ali, Hunar Farid Hama;Ibrahim, Hawkar Hashim;Rashidi, Shima
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.359-374
    • /
    • 2022
  • Geology conditions are crucial in decision-making during the planning and design phase of a tunnel project. Estimation of the geology conditions of road tunnels is subject to significant uncertainties. In this work, the effectiveness of a novel regression method in estimating geological or geotechnical parameters of road tunnel projects was explored. This method, called Gaussian process regression (GPR), formulates the learning of the regressor within a Bayesian framework. The GPR model was trained with data of old tunnel projects. To verify its feasibility, the GPR technique was applied to a road tunnel to predict the state of three geological/geomechanical parameters of Rock Mass Rating (RMR), Rock Structure Rating (RSR) and Q-value. Finally, in order to validate the GPR approach, the forecasted results were compared to the field-observed results. From this comparison, it was concluded that, the GPR is presented very good predictions. The R-squared values between the predicted results of the GPR vs. field-observed results for the RMR, RSR and Q-value were obtained equal to 0.8581, 0.8148 and 0.8788, respectively.

Impact of COVID-19 on the Stock Market Performance of Global IT Sector

  • CHAUDHARY, Rashmi;BAKHSHI, Priti
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.217-227
    • /
    • 2022
  • Predicting return and volatility in the global Capital Market during a pandemic is challenging, and it is more difficult for a specific sector, particularly if that sector has a positive outlook. The goal of this research is to look at the impact of COVID-19 on the mean and volatility of the Information Technology Indexes of the best nine technology-driven countries based on return performance using an econometric GARCH model that is widely used. The daily returns of information technology indexes are evaluated for the same from November 2018 to February 2021. Data is taken from Yahoo Finance for CAC Tech (France), DAX Tech (Germany), FTSE All Tech (UK), KOPSI 200 IT (Korea), NIFTY IT (India), S&P 500 IT (US), S&P TSX (Canada), SSE_IT (China) and TOPIX17 (Japan). The results show daily positive mean returns for 8 countries' IT Indices and further, an uptrend in mean daily returns is observed in the crisis period for 6 countries' IT Indices. The exogenous variable COVID-19 which was taken as a regressor for the GARCH model was found to be positively significant for IT indices of all the countries. The overall results confirm the presence of the mean-reverting phenomenon for IT indices of all the countries.

Camouflage Pattern Evaluation based on Environment and Camouflage Pattern Similarity Analysis (작전환경 및 위장무늬 유사도 분석 기반 위장무늬 평가)

  • Yun, Jeongrok;Kim, Hoemin;Kim, Un Yong;Chun, Sungkuk
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.671-672
    • /
    • 2021
  • 본 논문에서는 작전환경과 위장무늬 디자인 영상 간의 색상 및 구조 분석 기반의 새로운 정량적 위장무늬 평가 방법을 제안한다. 작전환경 및 위장무늬 디자인 영상 간 RGB, Lab 색상 공간에서의 화소간 평균 오차 및 색상 히스토그램 비교를 통해 색상 유사도를 계산한다. 또한, PSNR(Peak Signal-to-Noise Ratio), MSSIM(Mean Structural Similarity Index), UIQI, GMSD 및 딥러닝 기반 영상 간 구조 유사도를 계산한다. Random Forest Regressor를 통해 각각 계산된 색상 및 구조 유사도 파라미터를 회기 분석하여 최종 위장무늬 평가 결과를 계산한다. 20명의 피실험자를 대상으로 제안한 위장무늬 평가 방법과 기존 평가 방법을 비교함을 통해 제안한 방법의 성능을 검증하였다.

  • PDF

Prediction of Hardness for Cold Forging Manufacturing through Machine Learning (기계학습을 활용한 냉간단조 부품 제조 경도 예측 연구)

  • K. Kim;J-.G. Park;U. R. Heo;Y. H. Lee;D. H. Chang;H. W. Yang
    • Transactions of Materials Processing
    • /
    • v.32 no.6
    • /
    • pp.329-334
    • /
    • 2023
  • The process of heat treatment in cold forging is an essential role in enhancing mechanical properties. However, it relies heavily on the experience and skill of individuals. The aim of this study is to predict hardness using machine learning to optimize production efficiency in cold forging manufacturing. Random Forest (RF), Gradient Boosting Regressor (GBR), Extra Trees (ET), and ADAboosting (ADA) models were utilized. In the result, the RF, GBR, and ET models show the excellent performance. However, it was observed that GBR and ET models leaned significantly towards the influence of temperature, unlike the RF model. We suggest that RF model demonstrates greater reliability in predicting hardness due to its ability to consider various variables that occur during the cold forging process.

Predicting Oxynitrification layer using AI-based Varying Coefficient Regression model (AI 기반의 Varying Coefficient Regression 모델을 이용한 산질화층 예측)

  • Hye Jung Park;Joo Yong Shim;Kyong Jun An;Chang Ha Hwang;Je Hyun Han
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.6
    • /
    • pp.374-381
    • /
    • 2023
  • This study develops and evaluates a deep learning model for predicting oxide and nitride layers based on plasma process data. We introduce a novel deep learning-based Varying Coefficient Regressor (VCR) by adapting the VCR, which previously relied on an existing unique function. This model is employed to forecast the oxide and nitride layers within the plasma. Through comparative experiments, the proposed VCR-based model exhibits superior performance compared to Long Short-Term Memory, Random Forest, and other methods, showcasing its excellence in predicting time series data. This study indicates the potential for advancing prediction models through deep learning in the domain of plasma processing and highlights its application prospects in industrial settings.

Data-mining modeling for the prediction of wear on forming-taps in the threading of steel components

  • Bustillo, Andres;Lopez de Lacalle, Luis N.;Fernandez-Valdivielso, Asier;Santos, Pedro
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.337-348
    • /
    • 2016
  • An experimental approach is presented for the measurement of wear that is common in the threading of cold-forged steel. In this work, the first objective is to measure wear on various types of roll taps manufactured to tapping holes in microalloyed HR45 steel. Different geometries and levels of wear are tested and measured. Taking their geometry as the critical factor, the types of forming tap with the least wear and the best performance are identified. Abrasive wear was observed on the forming lobes. A higher number of lobes in the chamber zone and around the nominal diameter meant a more uniform load distribution and a more gradual forming process. A second objective is to identify the most accurate data-mining technique for the prediction of form-tap wear. Different data-mining techniques are tested to select the most accurate one: from standard versions such as Multilayer Perceptrons, Support Vector Machines and Regression Trees to the most recent ones such as Rotation Forest ensembles and Iterated Bagging ensembles. The best results were obtained with ensembles of Rotation Forest with unpruned Regression Trees as base regressors that reduced the RMS error of the best-tested baseline technique for the lower length output by 33%, and Additive Regression with unpruned M5P as base regressors that reduced the RMS errors of the linear fit for the upper and total lengths by 25% and 39%, respectively. However, the lower length was statistically more difficult to model in Additive Regression than in Rotation Forest. Rotation Forest with unpruned Regression Trees as base regressors therefore appeared to be the most suitable regressor for the modeling of this industrial problem.