• Title/Summary/Keyword: regression method

Search Result 7,248, Processing Time 0.038 seconds

Restricted support vector quantile regression without crossing

  • Shim, Joo-Yong;Lee, Jang-Taek
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1319-1325
    • /
    • 2010
  • Quantile regression provides a more complete statistical analysis of the stochastic relationships among random variables. Sometimes quantile functions estimated at different orders can cross each other. We propose a new non-crossing quantile regression method applying support vector median regression to restricted regression quantile, restricted support vector quantile regression. The proposed method provides a satisfying solution to estimating non-crossing quantile functions when multiple quantiles for high dimensional data are needed. We also present the model selection method that employs cross validation techniques for choosing the parameters which aect the performance of the proposed method. One real example and a simulated example are provided to show the usefulness of the proposed method.

A Prediction Method Combining Clustering Method and Stepwise Regression (군집분석 기법과 단계별 회귀모델을 결합한 예측 방법)

  • Chong Il-gyo;Jun Chi-Hyuck
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.949-952
    • /
    • 2002
  • A regression model is used in predicting the response variable given predictor variables However, in case of large number of predictor variables, a regression model has some problems such as multicollinearity, interpretation of the functional relationship between the response and predictors and prediction accuracy. A clustering method and stepwise regression could be used to reduce the amount of data by grouping predictors having similar properties and by selecting the subset of predictors. respectively. This paper proposes a prediction method combining clustering method and stepwise regression. The proposed method fits a global model and local models and predicts responses given new observations by using both models. The paper also compares the performance of proposed method with stepwise regression via a real data of ample obtained in a steel process.

  • PDF

Settlement Prediction Accuracy Analysis of Weighted Nonlinear Regression Hyperbolic Method According to the Weighting Method (가중치 부여 방법에 따른 가중 비선형 회귀 쌍곡선법의 침하 예측 정확도 분석)

  • Kwak, Tae-Young ;Woo, Sang-Inn;Hong, Seongho ;Lee, Ju-Hyung;Baek, Sung-Ha
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.4
    • /
    • pp.45-54
    • /
    • 2023
  • The settlement prediction during the design phase is primarily conducted using theoretical methods. However, measurement-based settlement prediction methods that predict future settlements based on measured settlement data over time are primarily used during construction due to accuracy issues. Among these methods, the hyperbolic method is commonly used. However, the existing hyperbolic method has accuracy issues and statistical limitations. Therefore, a weighted nonlinear regression hyperbolic method has been proposed. In this study, two weighting methods were applied to the weighted nonlinear regression hyperbolic method to compare and analyze the accuracy of settlement prediction. Measured settlement plate data from two sites located in Busan New Port were used. The settlement of the remaining sections was predicted by setting the regression analysis section to 30%, 50%, and 70% of the total data. Thus, regardless of the weight assignment method, the settlement prediction based on the hyperbolic method demonstrated a remarkable increase in accuracy as the regression analysis section increased. The weighted nonlinear regression hyperbolic method predicted settlement more accurately than the existing linear regression hyperbolic method. In particular, despite a smaller regression analysis section, the weighted nonlinear regression hyperbolic method showed higher settlement prediction performance than the existing linear regression hyperbolic method. Thus, it was confirmed that the weighted nonlinear regression hyperbolic method could predict settlement much faster and more accurately.

A Study on the Local Regression Rate of Solid Fuel in Hybrid Rocket (하이브리드 로켓에서의 고체연료의 국부 후퇴율에 관한 연구)

  • Kim, Soojong;Lee, Jungpyo;Kim, Gihun;Cho, Jungtae;Kim, Hakchul;Woo, Kyoungjin;Moon, Heejang;Sung, Hong-Gye;Kim, Jin-Kon
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2008
  • In generally, the regression rate was expressed with average value and oxidizer mass flux in hybrid propulsion system. This can not represent the local value of regression rate along with oxidizer flow direction. In this study, experimental studies were performed with Separation method and Cutting method for measure local regression rate. In axial injection, the local regression rate decreases rapidly with axial location near entrance and increases with axial direction from the leading edge and the empirical formula for local regression rate with function of oxidizer mass flux and location was derived. Swirl injection regression rate has higher value at the leading edge of the fuel and comparatively uniform regression rate at the downstream. Overall regression rate of swirl injection is higher increased about 54 % than regression rate of axial injection.

  • PDF

Interval Regression Models Using Variable Selection

  • Choi Seung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.125-134
    • /
    • 2006
  • This study confirms that the regression model of endpoint of interval outputs is not identical with that of the other endpoint of interval outputs in interval regression models proposed by Tanaka et al. (1987) and constructs interval regression models using the best regression model given by variable selection. Also, this paper suggests a method to minimize the sum of lengths of a symmetric difference among observed and predicted interval outputs in order to estimate interval regression coefficients in the proposed model. Some examples show that the interval regression model proposed in this study is more accuracy than that introduced by Inuiguchi et al. (2001).

Hybrid Fuzzy Least Squares Support Vector Machine Regression for Crisp Input and Fuzzy Output

  • Shim, Joo-Yong;Seok, Kyung-Ha;Hwang, Chang-Ha
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.2
    • /
    • pp.141-151
    • /
    • 2010
  • Hybrid fuzzy regression analysis is used for integrating randomness and fuzziness into a regression model. Least squares support vector machine(LS-SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate hybrid fuzzy linear and nonlinear regression models with crisp inputs and fuzzy output using weighted fuzzy arithmetic(WFA) and LS-SVM. LS-SVM allows us to perform fuzzy nonlinear regression analysis by constructing a fuzzy linear regression function in a high dimensional feature space. The proposed method is not computationally expensive since its solution is obtained from a simple linear equation system. In particular, this method is a very attractive approach to modeling nonlinear data, and is nonparametric method in the sense that we do not have to assume the underlying model function for fuzzy nonlinear regression model with crisp inputs and fuzzy output. Experimental results are then presented which indicate the performance of this method.

A Note for Speed-Up of Interval Regression Neural Network (구간회귀 신경망의 속도개선)

  • 이중우;권순학
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.05a
    • /
    • pp.101-104
    • /
    • 2001
  • This paper deals with the speed-up of interval regression neural network. We propose an improved method of adjusting the parameter alpha used in the interval regression neural network to improve the learning speed and regression performance. Finally, we provide numerical examples to evaluate the performance of the proposed method.

  • PDF

Comparison Study of Parameter Estimation Methods for Some Extreme Value Distributions (Focused on the Regression Method) (극단치 분포의 모수 추정방법 비교 연구(회귀 분석법을 기준으로))

  • Woo, Ji-Yong;Kim, Myung-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.3
    • /
    • pp.463-477
    • /
    • 2009
  • Parameter estimation methods such as maximum likelihood estimation method, probability weighted moments method, regression method have been popularly applied to various extreme value models in numerous literature. Among three methods above, the performance of regression method has not been rigorously investigated yet. In this paper the regression method is compared with the other methods via Monte Carlo simulation studies for estimation of parameters of the Generalized Extreme Value(GEV) distribution and the Generalized Pareto(GP) distribution. Our simulation results indicate that the regression method tends to outperform other methods under small samples by providing smaller biases and root mean square errors for estimation of location parameter of the GEV model. For the scale parameter estimation of the GP model under small samples, the regression method tends to report smaller biases than the other methods. The regression method tends to be superior to other methods for the shape parameter estimation of the GEV model and GP model when the shape parameter is -0.4 under small and moderately large samples.

Combining Ridge Regression and Latent Variable Regression

  • Kim, Jong-Duk
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.1
    • /
    • pp.51-61
    • /
    • 2007
  • Ridge regression (RR), principal component regression (PCR) and partial least squares regression (PLS) are among popular regression methods for collinear data. While RR adds a small quantity called ridge constant to the diagonal of X'X to stabilize the matrix inversion and regression coefficients, PCR and PLS use latent variables derived from original variables to circumvent the collinearity problem. One problem of PCR and PLS is that they are very sensitive to overfitting. A new regression method is presented by combining RR and PCR and PLS, respectively, in a unified manner. It is intended to provide better predictive ability and improved stability for regression models. A real-world data from NIR spectroscopy is used to investigate the performance of the newly developed regression method.

  • PDF

FUZZY REGRESSION MODEL WITH MONOTONIC RESPONSE FUNCTION

  • Choi, Seung Hoe;Jung, Hye-Young;Lee, Woo-Joo;Yoon, Jin Hee
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.973-983
    • /
    • 2018
  • Fuzzy linear regression model has been widely studied with many successful applications but there have been only a few studies on the fuzzy regression model with monotonic response function as a generalization of the linear response function. In this paper, we propose the fuzzy regression model with the monotonic response function and the algorithm to construct the proposed model by using ${\alpha}-level$ set of fuzzy number and the resolution identity theorem. To estimate parameters of the proposed model, the least squares (LS) method and the least absolute deviation (LAD) method have been used in this paper. In addition, to evaluate the performance of the proposed model, two performance measures of goodness of fit are introduced. The numerical examples indicate that the fuzzy regression model with the monotonic response function is preferable to the fuzzy linear regression model when the fuzzy data represent the non-linear pattern.