• 제목/요약/키워드: regression formulas

검색결과 115건 처리시간 0.027초

Response modification factor of mixed structures

  • Fanaie, Nader;Shamlou, Shahab O.
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1449-1466
    • /
    • 2015
  • Mixed structures consist of two parts: a lower part and an upper part. The lower part is usually made of concrete while the upper part is made of steel. Analyzing these structures is complicated and code-based design of them has many associated problems. In this research, the seismic behavior of mixed structures which have reinforced concrete frames and shear walls in their lower storeys and steel frames with bracing in their upper storeys were studied. For this purpose, seventeen structures in three groups of 5, 9 and 15 storey structures with different numbers of concrete and steel storeys were designed. Static pushover analysis, linear dynamic analysis and incremental dynamic analysis (IDA) using 15 earthquake records were performed by OpenSees software. Seismic parameters such as period, response modification factor and ductility factor were then obtained for the mixed (hybrid) structures using more than 4600 nonlinear dynamic analysis and used in the regression analysis for achieving proper formula. Finally, some formulas, effective in designing such structures, are presented for the mentioned parameters. According to the results obtained from this research, the response modification factor values of mixed structures are lower compared to those of steel or concrete ones with the same heights. This fact might be due to the irregularities of stiffness, mass, etc., at different heights of the structure. It should be mentioned that for the first time, the performance and seismic response of such structures were studied against real earthquake accelerations using nonlinear dynamic analysis, andresponse modification factor was obtained by IDA.

민감도 해석을 통한 선체 부가물이 함정의 조종성능에 미치는 영향 분석 (The Effect of Hull Appendages on Maneuverability of Naval Ship by Sensitivity Analysis)

  • 김대혁;이기표;김낙완
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.154-161
    • /
    • 2014
  • Naval ships have hull appendages which are more exposed to the outside because of its small block coefficient compared with commercial ships. These exposed hull appendages like skeg, strut and shaft line affect the maneuverability of a ship. The effect of hull appendages has considered at initial design stage to estimate more accurate maneuverability. In this paper, sensitivity analysis is used to analyze the effect on maneuverability by hull appendages. 3 DOF maneuvering equations based on Mathematical Modelling Group (MMG) model are used and propeller & rudder model are modified to reflect the characteristics of twin propeller & twin rudder. Numerical maneuvering simulations (Turning test, Zig-zag test) for benchmark naval vessel, David Taylor Model Basin (DTMB) 5415 are performed. In every simulation, it is calculated that stability indices and maneuverability characteristics (Tactical Dia., Advance, 1st Overshoot, Time of complete cycle) with respect to the parameters (area times lift coefficient slope, attachment location) of hull appendages. As a result, two regression formulas are established. One is the relation of maneuverability characteristics and stability indices and the other is the relation of stability indices and hull appendages.

중소유역의 수문학적 특성이 하천유사량에 미치는 영향 (The Effects of Hydrologic Characteristics on Sediment Discharge in Streams with Small and Medium Size Watersheds)

  • 김활곤;서승덕
    • 한국농공학회지
    • /
    • 제38권3호
    • /
    • pp.127-136
    • /
    • 1996
  • The purpose of this study is to provide with information for the water resources development and management in stream management planning, such as information on the sediment trensport, design of dam and water facilities, river improvement and flood plains management. The major results obtained from the field measurement and analysis of the watershed characteristics, hydraulic and sediment characteristics are as follows ; 1. The rating curve formulas obtained from the analysis of the hydraulic characteristics data collected are ; Q-=110.563 $(H-0.474)^2$ for 0.7m$(H-0.146)^2$ for 0.4m$Sr=aX{^2} {_1} X^{c}{_2}$, in the experimental watershed.

  • PDF

A study on hydrodynamic coefficients estimation of modelling ship using system identification method

  • Kim, Dae-Won;Benedict, Knud;Paschen, Mathias
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권10호
    • /
    • pp.935-941
    • /
    • 2016
  • Predicting and evaluating ship manoeuvring characteristics are very important not only for the design stage, but also for the existing vessels. There are several ways to predict ship's manoeuvrability and most of them are highly connected with the estimation of hydrodynamic coefficients. This paper presents a new estimation method using the system identification with mathematical algorithms for estimating hydrodynamic coefficient in the ship's mathematical model. Specifically a double ended ferry which equips four azimuth propulsion systems were chosen as benchmark ship and a set of benchmark data which is generated in the fast time simulation software was provided to conduct mathematical optimization process. Also the initial values for the optimization were borrowed from the empirical regression formulas of the simulation software of Rheinmetall Defence ship simulator. Therefore the newly suggested mathematical optimization algorithm gave a successful result for estimation hydrodynamic coefficients. Proper optimization conditions of the objective function and constraints were also verified during the study.

교차로 용량분석을 위한 교통류 특성 기초조사 (A Basic Investigation on the Characteristics of Traffic Flow for the Capacity Analysis of Signalized Intersections)

  • 이승환
    • 대한교통학회지
    • /
    • 제7권2호
    • /
    • pp.89-111
    • /
    • 1989
  • This study concentrates on a basic investigation research related to some of parameters to be used for the analysis of capacity and the level of service for signalized intersections. The parameters to be studied are ideal saturation flow rate, large vehicle's passenger car equivalent(PCE) ane the lane utilization factors of through and left turn vehicles. The field data were collected at six intersections in Seoul using video cameras so as to reflect conditions in urban areas. In this study discharge headway based on a rear bumper of each vehicle was used and all the parameters were estimated using a regression technique. The findings of this research are as follows : 1. The saturation headway and saturation flow rate on a single lane with the lane width of 3.1m are 1.652 seconds and 2,180 pcphgpl. It was found that the frist 5 vehicles in the queue experience some start-up lost time. 2. It was confirmed that the new method adopted for the estimate of large vehicle's PCE gives larger PCE values than those derived from the method commonly used. 3. For the estimate of lane utilization factors of through and left turn vehicles, a relationship was established and the corresponding formulas were developed.

  • PDF

절삭력을 이용한 칩형태의 예측에 관한 연구 (A Study on the Prediction of the Form of Chips using Cutting Forces)

  • 이상준;최만성;송지복
    • 한국정밀공학회지
    • /
    • 제5권1호
    • /
    • pp.40-49
    • /
    • 1988
  • The chip control problem is one of the important subjects to be studied in the metal cutting process. Especially, an important practical problem concerns the form of chips pro- duced in machining since this has important implications relative to : 1. Personal safety. 2. Possible damage to equipment and product. 3. Handling and disposal of swarf after machining. 4. Cutting forces, temperatures, and tool life. However, a dependable way to predict the form of chips in a wide range of cutting conditions has not been established satisfactorily. In this paper, the relationship between the form of chips and the ratios of cutting forces were studied experimentally. According to what the experiments have been carried out in the turning process the main results can be summarized as follows : 1. By use of the multiple linear regression model, emperical formulas which are suitable to wide ranges of cutting conditions with accuracy were obtained satisfactorily. 2. The correlations between the form of chips based upon the classification by Henriksen and the ratios of cutting forces, namely (feeding force/thrust force), (principal force/feeding force) were determined. 3. Using above results, the algorithms which predict the form of chips were constituted. With these algorithms, the form of chips in a wide range of cutting of cutting conditions can be predicted.

  • PDF

Bond behavior between circular steel tube and high-strength concrete after elevated temperatures

  • Ji, Zhou;Zongping, Chen;Maogen, Ban;Yunsheng, Pang
    • Structural Engineering and Mechanics
    • /
    • 제84권5호
    • /
    • pp.575-590
    • /
    • 2022
  • In this paper, bond-slip behavior of high strength concrete filled circular steel tube (HSCFCST) after elevated temperatures treatment was studied. 17 specimens were designed for push-out test. The influence was discussed as following parameters: (a) concrete strength, (b) constant temperature, and (c) bond length. The results showed that (1) after elevated temperatures treatment, the bond strength of the HSCFCST specimens increased first and then decreased with temperature rising; (2) the bond strength increased with the increase of concrete strength at room temperature, while the influence subsided after elevated temperatures treatment; (3) the strain of the circular steel tube was distributed exponentially along its length, the stress changed from exponential distribution to uniform distribution with the increase of load; (4) the bond damage process was postponed with the increase of constant temperature; and (5) the energy consumption capacity of the bonding interface increased with the rise of concrete strength and constant temperature. Moreover, computational formulas of ultimate and residual bond strength were obtained by regression, and the bond-slip constitutive models of HSCFCSTs after elevated temperatures was established.

Modified models predicting punching capacity of edge column-slab joints considering different codes

  • Hamdy A. Elgohary;Mohamed A. El Zareef
    • Structural Engineering and Mechanics
    • /
    • 제89권4호
    • /
    • pp.363-374
    • /
    • 2024
  • Significant changes have been made to estimate the punching shear capacity for edge column-slab joints in the latest editions of most current codes. The revised equations account for axial forces as well as moments conveyed to columns from slabs, which have a substantial impact on the punching resistance of such joints. Many key design parameters, such as reinforcement-ratio, concrete strength, size-effect, and critical-section perimeter, were treated differently or even ignored in various code provisions. Consequently, wide ranges of predicted punching shear strength were detected by applying different code formulas. Therefore, it is essential to assess the various current Codes' design-equations. Because of the similarity in estimated outcomes, only the ACI, EC, and SNiP are used in this study to cover a wide range of estimation ranges from highly conservative to unconservative. This paper is devoted to analyzing the techniques in these code provisions, comparing the estimated punching resistance with available experimental data, and finally developing efficient models predicting the punching capacity of edge column-slab connections. 63 samples from past investigations were chosen for validation. To appropriately predict the punching shear, newly updated equations for ACI and SNiP are provided based on nonlinear regression analysis. The proposed equations'results match the experimental data quite well.

Critical buckling coefficient for simply supported tapered steel web plates

  • Saad A. Yehia;Bassam Tayeh;Ramy I. Shahin
    • Structural Engineering and Mechanics
    • /
    • 제90권3호
    • /
    • pp.273-285
    • /
    • 2024
  • Tapered girders emerged as an economical remedy for the challenges associated with constructing long-span buildings. From an economic standpoint, these systems offer significant advantages, such as wide spans, quick assembly, and convenient access to utilities between the beam's shallow sections and the ceiling below. Elastic-local buckling is among the various failure modes that structural designers must account for during the design process. Despite decades of study, there remains a demand for efficient and comprehensive procedures to streamline product design. One of the most pressing requirements is a better understanding of the tapered web plate girder's local buckling behavior. This paper conducts a comprehensive numerical analysis to estimate the critical buckling coefficient for simply supported tapered steel web plates, considering loading conditions involving compression and bending stresses. An eigenvalue analysis was carried out to determine the natural frequencies and corresponding mode shapes of tapered web plates with varying geometric parameters. Additionally, the study highlights the relative significance of various parameters affecting the local buckling phenomenon, including the tapering ratio of the panel, normalized plate length, and ratio of minimum to maximum compressive stresses. The regression analysis and optimization techniques were performed using MATLAB software for the results of the finite element models to propose a separate formula for each load case and a unified formula covering different compression and bending cases of the elastic local buckling coefficient. The results indicate that the proposed formulas are applicable for estimating the critical buckling coefficient for simply supported tapered steel web plates.

인공신경망 모델의 가중치와 편의를 이용한 테트라포드의 안정수 계산 방법 (Calculation of Stability Number of Tetrapods Using Weights and Biases of ANN Model)

  • 이재성;서경덕
    • 한국해안·해양공학회논문집
    • /
    • 제28권5호
    • /
    • pp.277-283
    • /
    • 2016
  • 테트라포드는 경사식 방파제의 피복재로 가장 많이 사용되는 콘크리트 소파블록이다. 테트라포드의 안정수를 계산하는 것은 테트라포드의 적정 중량을 결정하기 위해 필요한 과정이다. 1950년대의 Hudson 식부터 최근에 Suh and Kang이 제안한 식까지 테트라포드의 안정수를 계산하기 위한 다양한 경험식들이 제안되었다. 이러한 경험식들은 대부분이 식의 형태를 가정하고 실험 자료를 이용하여 식의 계수들을 회귀분석을 통해 결정하였다. 최근에는, 실험 데이터가 많은 경우, software engineering (또는 machine learning) 방법이 도입되고 있다. 예를 들어서, 방파제 피복석의 안정수를 계산하기 위한 인공신경망 모델이 제안된 바 있다. 그러나 이러한 방법들은 기존의 경험식보다 정확도가 크게 뛰어나지 않고 엔지니어들에게 생소하기 때문에 아직까지 설계에 거의 사용되지 않고 있다. 본 연구에서는 인공신경망 모델의 가중치와 편의를 이용하여 테트라포드의 안정수를 계산하는 양해법을 제안한다. 이 방법은 행렬 연산을 할 줄 아는 엔지니어라면 인공신경망에 대한 지식이 없어도 사용할 수 있으며, 기존의 경험식에 비해 정확도도 우수하다.