• Title/Summary/Keyword: regression formulas

Search Result 115, Processing Time 0.029 seconds

Vibration of mitred and smooth pipe bends and their components

  • Redekop, D.;Chang, D.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.747-763
    • /
    • 2009
  • In this work, the linear vibration characteristics of $90^{\circ}$ pipe bends and their cylindrical and toroidal shell components are studied. The finite element method, based on shear-deformation shell elements, is used to carry out a vibration analysis of metallic multiple $90^{\circ}$ mitred pipe bends. Single, double, and triple mitred bends are considered, as well as a smooth bend. Sample natural frequencies and mode shapes are given. To validate the procedure, comparison of the natural frequencies is made with existing results for cylindrical and toroidal shells. The influence of the multiplicity of the bend, the boundary conditions, and the various geometric parameters on the natural frequency is described. The differential quadrature method, based on classical shell theory, is used to study the vibration of components of these bends. Regression formulas are derived for cylindrical shells (straight pipes) with one or two oblique edges, and for sectorial toroidal shells (curved pipes, pipe elbows). Two types of support are considered for each case. The results given provide information about the vibration characteristics of pipe bends over a wide range of the geometric parameters.

A Study on the Flexural Behavior of Steel Fiber Reinforced Concrete Structures (강섬유보강 콘크리트의 휨거동에 관한 연구)

  • 장동일;채원규;이명구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.169-174
    • /
    • 1990
  • Fracture tests were carried out in order to investigate the flexural behavior of SFRC (Steel Fiber Reinforced Concrete) structures. Sixty three SFRC beams were used in the tests, the fracture mode, the relationships between loading and strains, and the relationships between loading and mid-span deflections of the beams were observed under the three point bending loading. From the test results, the effects of steel fiber contents and a/h ratio on the concrete flexural behavior were studied, and the stress intensity factors and the flexural strength of SFRC beams were calculated. According to the results of regression analysis, predicting formulas for the flexural strength of SFRC beams are also suggested.

  • PDF

An Experimental Study of Pneumatic Damping at the Air Chamber for an OWC-type Wave Energy Device (OWC형 파력발전 공기챔버의 공기감쇠력 실험 연구)

  • CHOI HARK-SUN;HONG SEOK-WON;KlM JIN-HA;LEW JAE-MOON
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.4 s.59
    • /
    • pp.8-14
    • /
    • 2004
  • Pneumatic damping through an orifice-type duct for an OWC-type wave energy device is studied experimentally. Forced oscillation tests are used to measure chamber pressure and velocity of air-flow through an orifice. Pneumatic damping coefficients are deducted from the experimental research, and the influence of frequency, heave amplitude, and orifice size are discussed. Finally, two formulas are proposed for the estimation of non-dimensional pneumatic damping coefficient by regression analysis. The proposed formula proves to be a reliable method for practical application.

Static Strength of Internally Ring-Stiffened Tubular T-Joints (내부 환보강 T형 관이음부의 정적강도)

  • CHO HYUN-MAN;RYU YEON-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

Analysis of Incomplete Field Data with Covariates (설명변수를 고려한 불완전 사용현장데이터 분석)

  • Oh, Young-Seok;Choi, In-Su;Bai, Do-Sun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.4
    • /
    • pp.510-516
    • /
    • 1999
  • This paper proposes methods of estimating lifetime distribution from incomplete field data under parametric regression models. Failure-record data-failure times and covariates-reported to the manufacturer can be seriously incomplete for satisfactory inference since only reported failures are recorded. This paper assumes that within-warranty data are reported with probability $P_1$ ($\leq1$) and after-warranty data are reported with Methods of obtaining pseudo and after-warranty data are reported with $P_2$ (< $P_1$). Methods of obtaining pseudo maximum likelihood estimators(PMLEs) are outlined, their asymptotic properties are studied, and specific formulas for Weibull distribution are obtained. Simulation studies are perfumed to investigate the effects of follow-up percentage on the PMLEs.

  • PDF

Shear Strength of the Vertical Joints in Precast Concrete Large Panel Structures (대형 콘크리트 판넬구조의 수직접합부 전단강도에 관한 연구)

  • 서수연;이원호;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.1
    • /
    • pp.111-119
    • /
    • 1994
  • The strength of vertical joints of precast concrete large panel structures depends on the many factors, such as the bond strength of grout concrete (or mortar), the interlocking of the shear keys, the dowel action of horizontal bars. Many experimental studies have been conducted to in vestigate the shear strength of the vertical joints. In domestic, a few design formulas to predict shear strength of the vertical joint were proposed by some investigators, but formulas were based on limited experimental results. The objective of this paper is to propose a suitable formula for the shear strength of vertical joints with 94 vertical joints experimental data using the modified Mohr-Coulomb's 4ield theory and regression analysis. From the comparison of the proposed formula with others, it is shown that the proposed formula can be used economically for the design of vertical joints.

A Study on Estimating Daily Yield from Morning or Afternoon Milking Records with Unequal Milking Intervals (불균등 착유 시간간격의 오전·오후 유량기록을 이용한 1일 산유량 추정에 관한 연구)

  • Cho, Y.M.;Park, B.H.;Ahn, B.S.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.5
    • /
    • pp.707-718
    • /
    • 2004
  • This study was conducted to evaluate the adequacy of an alternative a.m. - p.m. testing scheme for milk yield in comparison with the official test method based on weighing two milkings within 24 h. A total of 8,309 p.m. milking weights and 6,767 am. milking weights from 72 Holstein cows raised at N.L.R.I. were collected between October 2000 and November 2001. Seven statistical models were fitted to the data to derive formulas for estimating daily milk yields from morning or evening yields. In general, use of evening milkings less accurately estimated than did use morning rnilkings. Although the models do not differ much in the correlations between estimated and true daily milk yields, systematic under- and overestimation of daily milk yields were observed in all models with the exception of model 7, which accounted for heterogeneous variances by parity class, milking interval class, and lactation stage by fitting separate regression formulas within each combination of three factors.

Unified calculation model for the longitudinal fundamental frequency of continuous rigid frame bridge

  • Zhou, Yongjun;Zhao, Yu;Liu, Jiang;Jing, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.343-354
    • /
    • 2021
  • The frequencies formulas of the bridge are of great importance in the design process since these formulas provide insight dynamic characteristics of the structure, which guides the designers to parametric analyses and the layout of the bridge in conceptual or preliminary design. Continuous rigid frame bridge is popular in the mountainous area. Mostly, this type of bridge was simplified either as a girder or cantilever when calculating the frequency, however, studies showed that the different configuration of the bridge made the problem more complex, and there is no unified fundamental calculation pattern for this kind of bridge. In this study, an empirical frequency equation is proposed as a function of pier's height, stiffness of pier and the weight of the structure. A unified fundamental frequency formula is presented based on the energy principle, then the typical continuous rigid frame bridge is investigated by finite element method (FEM) to study the dynamic characteristics of the structure, and then several key parameters are investigated on the effect of structural frequency. These parameters include the number, position and stiffness of the tie beam. Nonlinear regression analyses are conducted with a comprehensive statistical study from plenty of engineering structures. Finally, the proposed frequency equation is validated by field test results. The results show that the fundamental frequency of the continuous rigid frame bridge increases more than 15% when the tie beams are set, and it increases with the stiffness ratio of tie beam to pier. The results also show that the presented unified fundamental frequency has an error of 4.6% compared with the measured results. The investigation can predicate the approximate longitudinal fundamental frequency of continuous ridged frame bridge, which can provide reference for the seismic response and dynamic impact factor design of the pier.

Characteristics of Storm Runoff and Analysis of Its Correlation with Forest Properties (산림특성에 따른 강우유출수 유출특성 및 상관관계 분석)

  • Chung, WooJin;Chang, SoonWoong
    • Journal of Environmental Science International
    • /
    • v.25 no.7
    • /
    • pp.1007-1016
    • /
    • 2016
  • Environmental policy implementation has been strengthened to protect the source waters in Korea and to improve their water quality. Increasing of non-point source caused water quality problem continuously. Research on runoff from forests, which occupy over 65% of the land in korea, is insufficient, and studies on the characteristics and influences of storm runoff are necessary. In this study, we chose to compare the effects of land use in the form of two types of forest distribution and then gathered data on storm characteristics and runoff properties during rainfall events in these areas. Furthermore, the significance and influences of the discharges were analyzed through correlation analysis, and multilateral runoff characteristics were examined by deducing a formula through $COD_{Mn}$ and TOC regression analysis. At two forest points, for which the basin areas differed from each other, flow changed according to storm quantity and intensity. The peak discharge at point A, where the basin area was big, was high, whereas water-quality fundamental items (BOD, $COD_{Mn}$, and SS) and TOC density were high at point B where the slope and storm intensity were high. Effects of dissolved organic matter were determined through correlation analysis, and the regression formulas for $COD_{Mn}$ and TOC were deduced by regression analysis. It is expected that the data from this study could be useful as basic information in establishing forest management measures.

Determination of Design Channel Width for from Medium Rivers in Geum-River Basin (금강 유역내 중규모 하천의 계획하폭 산정)

  • Myeng, Bong-Jae;Lee, Jong-Seok;Cha, Young-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.47-56
    • /
    • 2007
  • The parameters are determined analyzing the hydraulic and hydrological characteristics of design floods, watershed, channel length, and river bed slope. The models are calibrated while the input hydrologic data are the field data of middle size areas in Guem river basin in Korea. The basic equations of design width are suggested by the multiple regression analysis and the results show excelled in comparisons as well as calibrations with the existing empirical formulas and the design criteria, respectively. The basic equations of design width in validation process is determined the regression functions with the design floods, watershed, channel length, river bed slope as the four parameters using other database in the same scales watershed. As a results, this study will be used for apply to determine of design width and river alignmentof the watershed in hydraulic fields.