• 제목/요약/키워드: regression algorithm

검색결과 1,065건 처리시간 0.029초

Fuzzy c-Regression Using Weighted LS-SVM

  • Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 한국데이터정보과학회 2005년도 추계학술대회
    • /
    • pp.161-169
    • /
    • 2005
  • In this paper we propose a fuzzy c-regression model based on weighted least squares support vector machine(LS-SVM), which can be used to detect outliers in the switching regression model while preserving simultaneous yielding the estimates of outputs together with a fuzzy c-partitions of data. It can be applied to the nonlinear regression which does not have an explicit form of the regression function. We illustrate the new algorithm with examples which indicate how it can be used to detect outliers and fit the mixed data to the nonlinear regression models.

  • PDF

도시인구분포모형 개발을 위한 GA모형과 회귀모형의 적합성 비교연구 (A Comparative Study on the Genetic Algorithm and Regression Analysis in Urban Population Surface Modeling)

  • 최내영
    • Spatial Information Research
    • /
    • 제18권5호
    • /
    • pp.107-117
    • /
    • 2010
  • 본 연구는 최근 다수 도시개발사업들이 활발히 진행되고 있는 화성시 동부권을 사례대상지로하여 행정구역 단위 인구데이터를 격자형 인구분포자료로 변환한 후 인구유인을 유발할 것으로 예상되는 주요 도시계획관련 공간변수들을 GIS로 측정 대입하여 제네틱 알고리즘기법과 회귀분석기법 두 가지 방법으로 일종의 도시인구분포모형을 구축하였다. 두 가지 모형의 분석결과를 통해 도시환경 해석에 있어서의 두 기법의 성능상 특장점을 비교해 보았으며, 분석결과 GA기법은 변수 설명력에 관한 변별력에 있어 일반회귀분석보다 우월한 특징이 있음을 알 수 있었고 따라서 회귀분석과 병행할 경우 매우 직관적이며 보완적인 도시분석기법이 될 수 있음을 확인할 수 있었다.

Outlier Identification in Regression Analysis using Projection Pursuit

  • Kim, Hyojung;Park, Chongsun
    • Communications for Statistical Applications and Methods
    • /
    • 제7권3호
    • /
    • pp.633-641
    • /
    • 2000
  • In this paper, we propose a method to identify multiple outliers in regression analysis with only assumption of smoothness on the regression function. Our method uses single-linkage clustering algorithm and Projection Pursuit Regression (PPR). It was compared with existing methods using several simulated and real examples and turned out to be very useful in regression problem with the regression function which is far from linear.

  • PDF

A Hybrid Algorithm for Identifying Multiple Outlers in Linear Regression

  • Kim, Bu-yong;Kim, Hee-young
    • Communications for Statistical Applications and Methods
    • /
    • 제9권1호
    • /
    • pp.291-304
    • /
    • 2002
  • This article is concerned with an effective algorithm for the identification of multiple outliers in linear regression. It proposes a hybrid algorithm which employs the least median of squares estimator, instead of the least squares estimator, to construct an Initial clean subset in the stepwise forward search scheme. The performance of the proposed algorithm is evaluated and compared with the existing competitor via an extensive Monte Carlo simulation. The algorithm appears to be superior to the competitor for the most of scenarios explored in the simulation study. Particularly it copes with the masking problem quite well. In addition, the orthogonal decomposition and Its updating techniques are considered to improve the computational efficiency and numerical stability of the algorithm.

Optimized Neural Network Weights and Biases Using Particle Swarm Optimization Algorithm for Prediction Applications

  • Ahmadzadeh, Ezat;Lee, Jieun;Moon, Inkyu
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1406-1420
    • /
    • 2017
  • Artificial neural networks (ANNs) play an important role in the fields of function approximation, prediction, and classification. ANN performance is critically dependent on the input parameters, including the number of neurons in each layer, and the optimal values of weights and biases assigned to each neuron. In this study, we apply the particle swarm optimization method, a popular optimization algorithm for determining the optimal values of weights and biases for every neuron in different layers of the ANN. Several regression models, including general linear regression, Fourier regression, smoothing spline, and polynomial regression, are conducted to evaluate the proposed method's prediction power compared to multiple linear regression (MLR) methods. In addition, residual analysis is conducted to evaluate the optimized ANN accuracy for both training and test datasets. The experimental results demonstrate that the proposed method can effectively determine optimal values for neuron weights and biases, and high accuracy results are obtained for prediction applications. Evaluations of the proposed method reveal that it can be used for prediction and estimation purposes, with a high accuracy ratio, and the designed model provides a reliable technique for optimization. The simulation results show that the optimized ANN exhibits superior performance to MLR for prediction purposes.

Support Vector Machine for Interval Regression

  • Hong Dug Hun;Hwang Changha
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2004년도 학술발표논문집
    • /
    • pp.67-72
    • /
    • 2004
  • Support vector machine (SVM) has been very successful in pattern recognition and function estimation problems for crisp data. This paper proposes a new method to evaluate interval linear and nonlinear regression models combining the possibility and necessity estimation formulation with the principle of SVM. For data sets with crisp inputs and interval outputs, the possibility and necessity models have been recently utilized, which are based on quadratic programming approach giving more diverse spread coefficients than a linear programming one. SVM also uses quadratic programming approach whose another advantage in interval regression analysis is to be able to integrate both the property of central tendency in least squares and the possibilistic property In fuzzy regression. However this is not a computationally expensive way. SVM allows us to perform interval nonlinear regression analysis by constructing an interval linear regression function in a high dimensional feature space. In particular, SVM is a very attractive approach to model nonlinear interval data. The proposed algorithm here is model-free method in the sense that we do not have to assume the underlying model function for interval nonlinear regression model with crisp inputs and interval output. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

대용량 자료에 대한 밀도 적응 격자 기반의 k-NN 회귀 모형 (Density Adaptive Grid-based k-Nearest Neighbor Regression Model for Large Dataset)

  • 유의기;정욱
    • 품질경영학회지
    • /
    • 제49권2호
    • /
    • pp.201-211
    • /
    • 2021
  • Purpose: This paper proposes a density adaptive grid algorithm for the k-NN regression model to reduce the computation time for large datasets without significant prediction accuracy loss. Methods: The proposed method utilizes the concept of the grid with centroid to reduce the number of reference data points so that the required computation time is much reduced. Since the grid generation process in this paper is based on quantiles of original variables, the proposed method can fully reflect the density information of the original reference data set. Results: Using five real-life datasets, the proposed k-NN regression model is compared with the original k-NN regression model. The results show that the proposed density adaptive grid-based k-NN regression model is superior to the original k-NN regression in terms of data reduction ratio and time efficiency ratio, and provides a similar prediction error if the appropriate number of grids is selected. Conclusion: The proposed density adaptive grid algorithm for the k-NN regression model is a simple and effective model which can help avoid a large loss of prediction accuracy with faster execution speed and fewer memory requirements during the testing phase.

등가의 Wiener-Hopf 방정식을 이용한 LMS 알고리즘에 관한 연구 (Research on the Least Mean Square Algorithm Based on Equivalent Wiener-Hopf Equation)

  • 안봉만;황지원;조주필
    • 한국통신학회논문지
    • /
    • 제33권5C호
    • /
    • pp.403-412
    • /
    • 2008
  • 본 논문은 등가의 Wiener-Hopf 방정식의 해를 LMS 알고리즘을 이용하여 구할 수 있는 방법과 격자필터에서 직접적으로 TDL 필터의 계수를 구할 수 있는 방법을 제안한다. 이를 위해 격자필터를 이용하여 생성한 직교입력 신호를 등가의 Wiener-Hopf 방정식에 적용하여 그 해를 최소평균자승 알고리즘을 이용하여 순환적으로 구하는 방법을 보인다. 이와 같은 경우 기존에는 오차와 regression 계수를 순환적으로 구할 수 있는데 반하여 본 논문에서는 오차와 TDL 필터의 계수를 순환적으로 구할 수 있는 장점이 있다. 또한 제안한 알고리즘의 수렴적 특성을 이론적으로 고찰하였다. 그 결과는 전통적 해석과 유사하게 나타남을 알 수 있었다. 성능 평가 결과를 통해 제안한 알고리즘이 매우 우수한 성능을 나타내고 있음을 확인하였다.

RHIPE 플랫폼에서 빅데이터 로지스틱 회귀를 위한 학습 알고리즘 (Learning algorithms for big data logistic regression on RHIPE platform)

  • 정병호;임동훈
    • Journal of the Korean Data and Information Science Society
    • /
    • 제27권4호
    • /
    • pp.911-923
    • /
    • 2016
  • 빅데이터 시대에 머신러닝의 중요성은 더욱 부각되고 있고 로지스틱 회귀는 머신러닝에서 분류를 위한 방법으로 의료, 경제학, 마케팅 및 사회과학 전반에 걸쳐 널리 사용되고 있다. 지금까지 R과 Hadoop의 통합환경인 RHIPE 플랫폼은 설치 및 MapReduce 구현의 어려움으로 인해 거의 연구가 이루지 지지 않았다. 본 논문에서는 대용량 데이터에 대해 로지스틱 회귀 추정을 위한 두가지 알고리즘 즉, Gradient Descent 알고리즘과 Newton-Raphson 알고리즘에 대해 MapReduce로 구현하고, 실제 데이터와 모의실험 데이터를 가지고 이들 알고리즘 간의 성능을 비교하고자 한다. 알고리즘 성능 실험에서 Gradient Descent 알고리즘은 학습률에 크게 의존하고 또한 데이터에 따라 수렴하지 않는 문제를 갖고 있다. Newton-Raphson 알고리즘은 학습률이 불필요 할 뿐만 아니라 모든 실험 데이터에 대해 좋은 성능을 보였다.

MLLR 화자적응 기법을 이용한 새로운 화자확인 디코딩 알고리듬 (A Noble Decoding Algorithm Using MLLR Adaptation for Speaker Verification)

  • 김강열;김지운;정재호
    • 한국음향학회지
    • /
    • 제21권2호
    • /
    • pp.190-198
    • /
    • 2002
  • 화자확인에서 사용되는 디코딩 방법에는 음성인식에서 주로 사용되는 비터비 알고리듬을 사용하여 왔다. 그러나 화자확인에서는 화자의 특성을 최대한 발휘하여 같은 음소라도 화자마다 다르게 인식해야 하는 어려움이 있다. 본 논문에서는 기존 화자확인 디코딩에서 사용하는 비터비 알고리듬을 대신하는 새로운 알고리듬을 제안하였다. 제안된 알고리듬은 음성인식에서 사용되고 있는화자 적응 알고리듬을 화자의 특성에 따라 모델 파라미터로 변환하는 것을 응용한 방법이다. 본 논문에서는 여러 적응 알고리듬중 MLLR(Maximum Likelihood Linear Regression)과 MAP (Maximum A-Posterior) 적응 알고리듬을 사용하였고 제안된 알고리듬이 기존의 비터비 알고리듬을 사용하였을 때보다 평균 30%의 EER (Equal Error Rate) 향상을 이루었다.