• 제목/요약/키워드: regression algorithm

검색결과 1,065건 처리시간 0.026초

데이터 크기에 따른 k-NN의 예측력 연구: 삼성전자주가를 사례로 (The Effect of Data Size on the k-NN Predictability: Application to Samsung Electronics Stock Market Prediction)

  • 천세학
    • 지능정보연구
    • /
    • 제25권3호
    • /
    • pp.239-251
    • /
    • 2019
  • 본 논문은 학습데이터의 크기에 따른 사례기반추론기법이 주가예측력에 어떻게 영향을 미치는지 살펴본다. 삼성전자 주가를 대상을 학습데이터를 2000년부터 2017년까지 이용한 경우와 2015년부터 2017년까지 이용한 경우를 비교하였다. 테스트데이터는 두 경우 모두 2018년 1월 1일부터 2018년 8월 31일까지 이용하였다. 시계 열데이터의 경우 과거데이터가 얼마나 유용한지 살펴보는 측면과 유사사례개수의 중요성을 살펴보는 측면에서 연구를 진행하였다. 실험결과 학습데이터가 많은 경우가 그렇지 않은 경우보다 예측력이 높았다. MAPE을 기준으로 비교할 때, 학습데이터가 적은 경우, 유사사례 개수와 상관없이 k-NN이 랜덤워크모델에 비해 좋은 결과를 보여주지 못했다. 그러나 학습데이터가 많은 경우, 일반적으로 k-NN의 예측력이 랜덤워크모델에 비해 좋은 결과를 보여주었다. k-NN을 비롯한 다른 데이터마이닝 방법론들이 주가 예측력 제고를 위해 학습데이터의 크기를 증가시키는 것 이외에, 거시경제변수를 고려한 기간유사사례를 찾아 적용하는 것을 제안한다.

위험 매트릭스(Risk Matrix)를 활용한 조류인플루엔자 인체감염증 위험지역 평가 (High-Risk Area for Human Infection with Avian Influenza Based on Novel Risk Assessment Matrix)

  • 박성대;유대성
    • 한국가금학회지
    • /
    • 제50권1호
    • /
    • pp.41-50
    • /
    • 2023
  • AI인체감염증은 한번 발생하게 되면 막대한 사회경제적 손실이 있으므로, 사전 예방적 관리가 필수적이다. 위험도 평가를 통해 위험요인과 위험지역을 확인하여 방역을 강화하고 사람, 동물, 환경 등 소관 부처 간 분산되어 있는 방역정책 및 관리를 원헬스 차원으로 협업·연계한다면 사회경제적 비용을 최소화할 수 있다. 이번 연구에서는 위험 매트릭스 분석을 통해 가금농장의 고병원성AI와 연계하여 AI인체감염증의 발생 위험지역을 평가하고 위험요인을 분석하였다. AI인체감염증은 가금농장의 고병원성AI와 밀접한 관련이 있고 가금관련 산업 종사자가 가장 감염에 취약한 위험군이기 때문에, 위험 매트릭스는 가금농장의 고병원성AI 평균 발생 건수와 감염에 취약한 가금 관련 축산시설 수를 활용하여 분석하였다. 조류인플루엔자 유행시기에 시·군·구별로 가금농장의 HPAI 평균 발생건수를 예측하기 위해 일반화 선형모형 중 과대산포가 있는 가산자료를 분석하는데 이용되는 음이항 회귀모형을 적용하였다. 시·군·구별 가금농장의 고병원성AI 발생건수와 축산시설 수를 적용한 위험 매트릭스 분석 결과, AI인체감염증의 발생위험이 높아 관리가 필요한 지역은 전남 나주, 전북 정읍, 전북 남원으로 확인되었다. 또한, AI 인체감염증의 발생에 영향을 줄 수 있는 위험요인으로는 가금농장의 저병원성 AI 발생건수, 닭과 오리의 사육 밀도, 축산차량 등록 수로 확인되었다. 가금농장에서 저병원성AI가 1건 발생 시 가금농장의 고병원성AI 발생은 1.687배 증가하고, 닭과 오리의 밀도가 1,000 두/km2 증가할 경우 가금농장의 고병원성AI 발생은 각각 1.618배, 10.252배 증가하며, 축산차량의 경우 100대 증가 시 가금농장의 고병원성AI 발생이 1.134배 증가하는 것으로 나타났다. AI인체감염증의 예방을 위해 HPAI의 발생주기인 2~3년 간격으로 위험평가를 실시하고 환경·동물·사람에 대하여 원 헬스(One Health)적 관점으로 위험요인과 위험지역을 관리한다면, AI인체감염증에 대한 방역정책 수립과 사회·경제적 비용 감소에 도움이 될 수 있을 것으로 판단된다.

심층신경망과 천리안위성 2A호를 활용한 지상기온 추정에 관한 연구 (Estimation for Ground Air Temperature Using GEO-KOMPSAT-2A and Deep Neural Network)

  • 엄태윤;김광년;조용한;송근용;이윤정;이윤곤
    • 대한원격탐사학회지
    • /
    • 제39권2호
    • /
    • pp.207-221
    • /
    • 2023
  • 본 연구는 천리안위성 2A호의 Level 1B (L1B) 정보를 사용해 지상기온을 추정하기 위한 심층신경망(deep neural network, DNN) 기법을 적용하고 검증을 실시하였다. 지상기온은 지면으로부터 1.5 m 높이의 대기온도로 일상생활뿐만 아니라 폭염이나 한파와 같은 이슈에 밀접한 관련을 갖는다. 지상기온은 지표면 온도와 대기의 열 교환에 의해 결정되므로 위성으로부터 산출된 지표면 온도(land surface temperature, LST)를 이용한 지상기온 추정 연구가 활발하였다. 하지만 천리안위성 2A호 산출물 LST는 Level 2 정보로 구름영향이 없는 픽셀만 산출되는 한계가 있다. 따라서 본 연구에서는 Advanced Meteorological Imager 센서에서 측정된 원시데이터에 오직 복사와 위치보정을 마친 L1B 정보를 사용해 지상기온을 추정하기 위한 DNN 모델을 제시하고 그 성능을 가늠하기 위해 위성 LST와 지상관측 기온 사이의 선형회귀모델을 기준모델로 사용하였다. 연구기간은 2020년부터 2022년까지 3년으로 평가기간 2022년을 제외한 기간은 훈련기간으로 설정했다. 평가지표는 기상청의 종관기상관측소에서 정시에 관측된 기온정보로 평균 제곱근 오차를 사용하였다. 관측지점에서 추출된 픽셀 중 손실된 픽셀의 비율은 LST는 57.91%, L1B는 1.63%를 보였으며 LST의 비율이 낮은 이유는 구름의 영향 때문이다. 제안한 DNN의 구조는 16개 L1B 자료와 태양정보를 입력 받는 층과 은닉층 4개, 지상기온 1개를 출력하는 층으로 구성하였다. 연구결과 구름의 영향이 없는 경우 DNN 모델이 root mean square error (RMSE) 2.22℃로 기준모델의 RMSE 3.55℃ 보다 낮은 오차를 보였고, 흐린 조건을 포함한 총 RMSE는 3.34℃를 나타내면서 구름의 영향을 제거할 수 있을 것으로 보였다. 하지만 계절과 시간에 따른 분석결과 여름과 겨울철에 모델의 결정계수가 각각 0.51과 0.42로 매우 낮게 나타났고 일 변동의 분산이 0.11과 0.21로 나타났다. 가시채널을 고려해 태양 위치정보를 추가한 결과에서 결정계수가 0.67과 0.61로 개선되었고 시간에 따른 일 변동의 분산도 0.03과 0.1로 감소하면서 모든 계절과 시간대에 더 일반화된 모델을 생성할 수 있었다.

효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용 (A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market)

  • 이모세;안현철
    • 지능정보연구
    • /
    • 제24권1호
    • /
    • pp.167-181
    • /
    • 2018
  • 지난 10여 년간 딥러닝(Deep Learning)은 다양한 기계학습 알고리즘 중에서 많은 주목을 받아 왔다. 특히 이미지를 인식하고 분류하는데 효과적인 알고리즘으로 알려져 있는 합성곱 신경망(Convolutional Neural Network, CNN)은 여러 분야의 분류 및 예측 문제에 널리 응용되고 있다. 본 연구에서는 기계학습 연구에서 가장 어려운 예측 문제 중 하나인 주식시장 예측에 합성곱 신경망을 적용하고자 한다. 구체적으로 본 연구에서는 그래프를 입력값으로 사용하여 주식시장의 방향(상승 또는 하락)을 예측하는 이진분류기로써 합성곱 신경망을 적용하였다. 이는 그래프를 보고 주가지수가 오를 것인지 내릴 것인지에 대해 경향을 예측하는 이른바 기술적 분석가를 모방하는 기계학습 알고리즘을 개발하는 과제라 할 수 있다. 본 연구는 크게 다음의 네 단계로 수행된다. 첫 번째 단계에서는 데이터 세트를 5일 단위로 나눈다. 두 번째 단계에서는 5일 단위로 나눈 데이터에 대하여 그래프를 만든다. 세 번째 단계에서는 이전 단계에서 생성된 그래프를 사용하여 학습용과 검증용 데이터 세트를 나누고 합성곱 신경망 분류기를 학습시킨다. 네 번째 단계에서는 검증용 데이터 세트를 사용하여 다른 분류 모형들과 성과를 비교한다. 제안한 모델의 유효성을 검증하기 위해 2009년 1월부터 2017년 2월까지의 약 8년간의 KOSPI200 데이터 2,026건의 실험 데이터를 사용하였다. 실험 데이터 세트는 CCI, 모멘텀, ROC 등 한국 주식시장에서 사용하는 대표적인 기술지표 12개로 구성되었다. 결과적으로 실험 데이터 세트에 합성곱 신경망 알고리즘을 적용하였을 때 로지스틱회귀모형, 단일계층신경망, SVM과 비교하여 제안모형인 CNN이 통계적으로 유의한 수준의 예측 정확도를 나타냈다.

ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로 (Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries)

  • 전승표;서진이;유재영
    • 지능정보연구
    • /
    • 제28권1호
    • /
    • pp.175-196
    • /
    • 2022
  • 우리나라의 주력 산업 중 하나였던 정보통신 및 가전 산업은 점차 수출 비중이 낮아지는 등 수출 경쟁력이 약화되고 있다. 본 연구는 이런 정보통신 및 가전 산업의 수출 제고를 돕기 위해서 객관적으로 수출경쟁력을 분석하고 수출 유망국가를 제시하고자 했다. 본 연구는 수출경쟁력 평가를 위해서 네트워크 분석 중 구조적 특징, 중심성 그리고 구조적 공백 분석을 수행했다. 유망 수출 국가를 선정하기 위해서는 기존에 경제적 요인 외에도 이미 형성된 글로벌 무역 네트워크(ITN) 즉 글로벌 밸류체인(GVC)의 특성을 고려할 수 있는 새로운 변수를 제안했다. 국가간 무역 네트워크 분석에서 Exponential Random Graph Model(ERGM)을 통해 도출된 개별적인 링크에 대한 조건부 로짓값(log-odds)을 수출가능성을 나타낼 수 있는 대리변수로 가정했다. 이런 ERGM의 링크 연결 가능성까지 고려해 수출 유망국가를 추천하는 데는 모수적 접근 방법과 비모수적 접근 방법을 각각 활용했다. 모수적 방법에서는 ERGM에서 도출된 네트워크의 링크별 특성값을 기존의 경제적 요인에 추가 고려하여 우리나라 정보통신 및 가전 산업 수출액을 예측하는 회귀분석 모형을 개발했다. 또한 비모수적 접근 방법에서는 클러스터링 방법을 바탕으로 한 Abnormality detection 알고리즘을 활용했는데, 2개 Peer(동배)에서 벗어난 이상값을 찾는 방법으로 수출 유망국가를 제안했다. 연구 결과에 따르면, 해당 산업 수출 네트워크의 구조적 특징은 이전성이 높은 연결망이었으며, 중심성 분석결과에 따르면 우리나라는 수출에 규모에 비해서 영향력이 약한 것으로 나타났고, 구조적 공백 분석결과에서 수출 효율성이 약한 것으로 나타났다. 본 연구가 제안한 추천모델에 따르면 모수 분석에서는 이란, 아일랜드, 북마케도니아, 앙골라, 파키스탄이 유망 수출 국가로 나타났으며, 비모수 분석에서는 카타르, 룩셈부르크, 아일랜드, 북마케도니아, 파키스탄이 유망 국가로 분석되었으며, 분석방법에 따라 추천된 국가에서는 일부 차이가 나타났다. 본 연구결과는 GVC에서 우리나라 정보통신과 가전 산업의 수출경쟁력이 수출 규모에 비해서 높지 않음을 밝혔고, 따라서 수출이 더욱 감소될 수 있음을 보였다. 또한 본 연구는 이렇게 약화된 수출경쟁력을 높일 수 있는 방안으로 다른 국가들과의 GVC 네트워크까지 고려해 수출유망 국가를 찾는 방법을 제안했다는데 의의가 있다.