• 제목/요약/키워드: regional regression methods

검색결과 270건 처리시간 0.021초

다중 지역기후모델로부터 모의된 월 기온자료를 이용한 다중선형회귀모형들의 예측성능 비교 (Inter-comparison of Prediction Skills of Multiple Linear Regression Methods Using Monthly Temperature Simulated by Multi-Regional Climate Models)

  • 성민규;김찬수;서명석
    • 대기
    • /
    • 제25권4호
    • /
    • pp.669-683
    • /
    • 2015
  • In this study, we investigated the prediction skills of four multiple linear regression methods for monthly air temperature over South Korea. We used simulation results from four regional climate models (RegCM4, SNURCM, WRF, and YSURSM) driven by two boundary conditions (NCEP/DOE Reanalysis 2 and ERA-Interim). We selected 15 years (1989~2003) as the training period and the last 5 years (2004~2008) as validation period. The four regression methods used in this study are as follows: 1) Homogeneous Multiple linear Regression (HMR), 2) Homogeneous Multiple linear Regression constraining the regression coefficients to be nonnegative (HMR+), 3) non-homogeneous multiple linear regression (EMOS; Ensemble Model Output Statistics), 4) EMOS with positive coefficients (EMOS+). It is same method as the third method except for constraining the coefficients to be nonnegative. The four regression methods showed similar prediction skills for the monthly air temperature over South Korea. However, the prediction skills of regression methods which don't constrain regression coefficients to be nonnegative are clearly impacted by the existence of outliers. Among the four multiple linear regression methods, HMR+ and EMOS+ methods showed the best skill during the validation period. HMR+ and EMOS+ methods showed a very similar performance in terms of the MAE and RMSE. Therefore, we recommend the HMR+ as the best method because of ease of development and applications.

공간분석을 이용한 지역별 비만율에 영향을 미치는 요인분석 (Analysing the Effects of Regional Factors on the Regional Variation of Obesity Rates Using the Geographically Weighted Regression)

  • 김다양;곽진미;서은원;이광수
    • 보건행정학회지
    • /
    • 제26권4호
    • /
    • pp.271-278
    • /
    • 2016
  • Background: This study purposed to analyze the relationship between regional obesity rates and regional variables. Methods: Data was collected from the Korean Statistical Information Service (KOSIS) and Community Health Survey in 2012. The units of analysis were administrative districts such as city, county, and district. The dependent variable was the age-sex adjusted regional obesity rates. The independent variables were selected to represent four aspects of regions: health behaviour factor, psychological factor, socio-economic factor, and physical environment factor. Along with the traditional ordinary least square (OLS) regression analysis model, this study applied geographically weighted regression (GWR) analysis to calculate the regression coefficients for each region. Results: The OLS results showed that there were significant differences in regional obesity rates in high-risk drinking, walking, depression, and financial independence. The GWR results showed that the size of regression coefficients in independent variables was differed by regions. Conclusion: Our results can help in providing useful information for health policy makers. Regional characteristics should be considered when allocating health resources and developing health-related programs.

하류 유량자료를 이용한 상류유역의 미계측 유출량 추정 (Estimation of Upstream Ungauged Watershed Streamflow using Downstream Discharge Data)

  • 정영훈;정충길;정성원;박종윤;김성준
    • 한국농공학회논문집
    • /
    • 제54권6호
    • /
    • pp.169-176
    • /
    • 2012
  • This study describes the estimation of upstream ungauged watershed streamflow using downstream discharge data. For downstream Dongchon (DC) and upstream Kumho (KH) water level stations in Kumho river basin ($2,087.9km^2$), three methods of Soil and Water Assessment Tool (SWAT) modeling, drainage-area ratio method and regional regression equation were evaluated. The SWAT was calibrated at DC with the determination coefficient ($R^2$) of 0.70 and validated at KH with $R^2$ of 0.60. The drainage-area ratio method showed $R^2$ of 0.93. For the regional regression, the watershed area, average slope, and stream length were used as variables. Using the derived equation at DC, the KH could estimate the flow with maximum 41.2 % error for the observed streamflow.

국가 위암검진 수검률의 지역 간 변이 (Regional Variation in National Gastric Cancer Screening Rate in Korea)

  • 박주현;최소영;이광수
    • 보건행정학회지
    • /
    • 제27권4호
    • /
    • pp.296-303
    • /
    • 2017
  • Background: This study purposed to analyze regional factors related to gastric cancer screening rate provided by national cancer screening program in Korea. Methods: The unit of analysis was administrative districts of si gun gu level. Dependent variable was regional gastric cancer screening rate provided by national cancer screening program, and regional variables were selected to represent the regional characteristics such as demographic, health behavior and status, socioeconomic, and health resource. Tobit regression was applied for the analysis. Results: Analysis results showed that gastric cancer screening rate was varied depending on regions from 47.8% to 69.1%. Tobit regression showed that gastric cancer screening rate had negative relationships with smoking rate, financial independence rate, and National Health Insurance premium per capita. And regional gastric cancer screening rate had positive relationships with sex ratio and number of gastric cancer screening center. Conclusion: Regional characteristics should be considered in establishing regional policies for increasing the gastric cancer screening rate.

당뇨병 유병률의 지역 간 변이와 지역 특성과의 관계 분석 (Spatial Distribution of Diabetes Prevalence Rates and Its Relationship with the Regional Characteristics)

  • 조은경;서은원;이광수
    • 보건행정학회지
    • /
    • 제26권1호
    • /
    • pp.30-38
    • /
    • 2016
  • Background: This study purposed to analyze the relationship between spatial distribution of Diabetes prevalence rates and regional variables. Methods: The unit of analysis was administrative districts of city gun gu. Dependent variable was the age- and sex- adjusted diabetes prevalence rates and regional variables were selected to represent three aspects: demographic and socioeconomic factor, health and medical factor, and physical environment factor. Along with the traditional ordinary least square (OLS) regression analysis, geographically weighted regression (GWR) was applied for the spatial analysis. Results: Analysis results showed that age- and sex-adjusted diabetes prevalence rates were varied depending on regions. OLS regression showed that diabetes prevalence rates had significant relationships with percent of population over age 65 and financial independence rate. In GWR, the effects of regional variables were not consistent. These results provide information to health policy makers. Conclusion: Regional characteristics should be considered in allocating health resources and developing health related programs for the regional disease management.

Factors Related to Regional Variation in the High-risk Drinking Rate in Korea: Using Quantile Regression

  • Kim, Eun-Su;Nam, Hae-Sung
    • Journal of Preventive Medicine and Public Health
    • /
    • 제54권2호
    • /
    • pp.145-152
    • /
    • 2021
  • Objectives: This study aimed to identify regional differences in the high-risk drinking rate among yearly alcohol users in Korea and to identify relevant regional factors for each quintile using quantile regression. Methods: Data from 227 counties surveyed by the 2017 Korean Community Health Survey (KCHS) were analyzed. The analysis dataset included secondary data extracted from the Korean Statistical Information Service and data from the KCHS. To identify regional factors related to the high-risk drinking rate among yearly alcohol users, quantile regression was conducted by dividing the data into 10%, 30%, 50%, 70%, and 90% quantiles, and multiple linear regression was also performed. Results: The current smoking rate, perceived stress rate, crude divorce rate, and financial independence rate, as well as one's social network, were related to the high-risk drinking rate among yearly alcohol users. The quantile regression revealed that the perceived stress rate was related to all quantiles except for the 90% quantile, and the financial independence rate was related to the 50% to 90% quantiles. The crude divorce rate was related to the high-risk drinking rate among yearly alcohol users in all quantiles. Conclusions: The findings of this study suggest that local health programs for high-risk drinking are needed in areas with high local stress and high crude divorce rates.

지역별 응급의료 접근성이 환자의 예후 및 응급의료비 지출에 미치는 영향 (Impact of Regional Emergency Medical Access on Patients' Prognosis and Emergency Medical Expenditure)

  • 김연진;이태진
    • 보건행정학회지
    • /
    • 제30권3호
    • /
    • pp.399-408
    • /
    • 2020
  • Background: The purpose of this study was to examine the impact of the regional characteristics on the accessibility of emergency care and the impact of emergency medical accessibility on the patients' prognosis and the emergency medical expenditure. Methods: This study used the 13th beta version 1.6 annual data of Korea Health Panel and the statistics from the Korean Statistical Information Service. The sample included 8,119 patients who visited the emergency centers between year 2013 and 2017. The arrival time, which indicated medical access, was used as dependent variable for multi-level analysis. For ordinal logistic regression and multiple regression, the arrival time was used as independent variable while patients' prognosis and emergency medical expenditure were used as dependent variables. Results: The results for the multi-level analysis in both the individual and regional variables showed that as the number of emergency medical institutions per 100 km2 area increased, the time required to reach emergency centers significantly decreased. Ordinal logistic regression and multiple regression results showed that as the arrival time increased, the patients' prognosis significantly worsened and the emergency medical expenses significantly increased. Conclusion: In conclusion, the access to emergency care was affected by regional characteristics and affected patient outcomes and emergency medical expenditure.

다중회귀분석을 이용한 DEA-AR 모형 개발 및 국내 지방공사의 효율성 평가 (The Development of the DEA-AR Model using Multiple Regression Analysis and Efficiency Evaluation of Regional Corporation in Korea)

  • 심광식;김재윤
    • 한국경영과학회지
    • /
    • 제37권1호
    • /
    • pp.29-43
    • /
    • 2012
  • We design a DEA-AR model using multiple regression analysis with new methods which limit weights. When there are multiple input and single output variables, our model can be used, and the weights of input variables use the regression coefficient and coefficient of determination. To verify the effectiveness of the new model, we evaluate the efficiency of the Regional Corporations in Korea. Accordance with statistical analysis, it proved that there is no difference between the efficiency value of the DEA-AR using AHP and our DEA-AR model. Our model can be applied to a lot of research by substituting DEA-AR model relying on AHP in the future.

식생여과대 유사 저감 효율 산정을 위한 정규화 방안 (A Study on Regularization Methods to Evaluate the Sediment Trapping Efficiency of Vegetative Filter Strips)

  • 배주현;한정호;양재의;김종건;임경재;장원석
    • 한국농공학회논문집
    • /
    • 제61권6호
    • /
    • pp.9-19
    • /
    • 2019
  • Vegetative Filter Strip (VFS) is the best management practice which has been widely used to mitigate water pollutants from agricultural fields by alleviating runoff and sediment. This study was conducted to improve an equation for estimating sediment trapping efficiency of VFS using several different regularization methods (i.e., ordinary least squares analysis, LASSO, ridge regression analysis and elastic net). The four different regularization methods were employed to develop the sediment trapping efficiency equation of VFS. Each regularization method indicated high accuracy in estimating the sediment trapping efficiency of VFS. Among the four regularization methods, the ridge method showed the most accurate results according to $R^2$, RMSE and MAPE which were 0.94, 7.31% and 14.63%, respectively. The equation developed in this study can be applied in watershed-scale hydrological models in order to estimate the sediment trapping efficiency of VFS in agricultural fields for an effective watershed management in Korea.

Application of artificial neural network model in regional frequency analysis: Comparison between quantile regression and parameter regression techniques.

  • Lee, Joohyung;Kim, Hanbeen;Kim, Taereem;Heo, Jun-Haeng
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2020년도 학술발표회
    • /
    • pp.170-170
    • /
    • 2020
  • Due to the development of technologies, complex computation of huge data set is possible with a prevalent personal computer. Therefore, machine learning methods have been widely applied in the hydrologic field such as regression-based regional frequency analysis (RFA). The main purpose of this study is to compare two frameworks of RFA based on the artificial neural network (ANN) models: quantile regression technique (QRT-ANN) and parameter regression technique (PRT-ANN). As an output layer of the ANN model, the QRT-ANN predicts quantiles for various return periods whereas the PRT-ANN provides prediction of three parameters for the generalized extreme value distribution. Rainfall gauging sites where record length is more than 20 years were selected and their annual maximum rainfalls and various hydro-meteorological variables were used as an input layer of the ANN model. While employing the ANN model, 70% and 30% of gauging sites were used as training set and testing set, respectively. For each technique, ANN model structure such as number of hidden layers and nodes was determined by a leave-one-out validation with calculating root mean square error (RMSE). To assess the performances of two frameworks, RMSEs of quantile predicted by the QRT-ANN are compared to those of the PRT-ANN.

  • PDF