개인용 컴퓨터에 연결하여 널리 사용되는 가시광선 카메라에 의해서 획득된 실시간 영상 데이터를 가지고 동공의 움직임을 검출하는 시스템을 제안하였다. 시스템은 3단계로 구성되는데, 첫 단계로 haar-like 기반의 특징 기법을 이용해서 얼굴 영역이 검출되고, 다음으로 얼굴 영역 내에서 템플릿 기반 기법을 이용하여 눈 영역이 검출된다. 끝으로 눈 영역 내에서 동공 부위가 검출되는데 눈 영상의 수평 및 수직 히스토그램 프로파일에 가우시안 필터를 컨벌루션 한 기법을 제안하였다. 실험 결과 2375개의 영장에 대해서 90% 이상의 검출율을 얻었으며 데이터 처리시간은 약 160㎳로 초당 7회씩 검출할 수 있었다.
본 논문에서는 영역병합 방법을 이용한 칼라 영상 분할 방법을 제안하였다. 영상 분할 전단계에서 비선형 필터링 방법을 이용한 평활화와 채도 강화 및 명도 평균화를 수행하여, 영상 내 존재하는 비균질성을 줄이고, 칼라 히스토그램의 zero-crossing 정보를 이용한 비균일 양자화를 수행하여 유사한 칼라성분을 가지는 영역들을 분할하였다. 웨이브릿 변환의 고주파 대역 에너지를 이용하여 분할된 초기 영역의 윤곽성분 강도를 측정하였고, 이를 통해 병합 후 후보영역을 선정하였다. 영역병합을 위한 영역간 유사도 측정은 R, G, B 칼라성분의 유클리디안 거리를 측정하여 수행하였다. 제안된 방법은 기존의 방법에 비해 불규칙한 광원으로 불필요한 영역이 분할되는 것을 줄일 수 있었고, 이를 실험을 통해 입증하였다.
인체의 해부학적 구조에 관해 다른 영상들보다 정확한 정보를 제공하는 MRI에 대해 많은 연구가 진행중이다. 본 논문에서는 대퇴골두 무혈성 괴사의 자동 진단에 필요한 대퇴골두 영역의 추출에 관한 효과적인 방법을 제안한다. 대퇴골두의 해부학적 특성과 Hough transform을 이용하여 대퇴골두 영역을 설정하였고, 대퇴골두 영역을 분할하는 방법으로서 영역 확장법과 히스토그램 기반 영역 분할 방법의 장점을 결합한 방법을 고안하였다. 본 논문에서 제시한 방법은 정상적인 대퇴골두와 무혈성 괴사의 초기 단계의 대퇴골두 뿐만 아니라 괴사가 심한 대퇴골두에 대해서도 좋은 결과를 얻을 수 있었다.
The segmentation of moving object in video sequence is a core technique of intelligent image processing system such as video surveillance, traffic monitoring and human tracking. A typical method to segment a moving region from the background is the background subtraction. The steps of background subtraction involve calculating a reference image, subtracting new frame from reference image and then thresholding the subtracted result. One of famous background modeling is Gaussian mixture model (GMM). Even though the method is known efficient and exact, GMM suffers from a problem that includes false pixels in ROI (region of interest), specifically shadow pixels. These false pixels cause fail of the post-processing tasks such as tracking and object recognition. This paper presents a method for removing false pixels included in ROT. First, we subdivide a ROI by using shape characteristics of detected objects. Then, a method is proposed to classify pixels from using histogram characteristic and comparing difference of energy that converts the color value of pixel into grayscale value, in order to estimate whether the pixels belong to moving object area or shadow area. The method is applied to real video sequence and the performance is verified.
Journal of the Korean Data and Information Science Society
/
제26권6호
/
pp.1239-1247
/
2015
이 논문에서는 아파트 매매가 활발히 일어나는 서울시내 64개 행정동들에 대해 아파트 전용면적별 실거래 매매가를 기준으로 군집분석을 실시하였다. 군집분석에 있어서 각 행정동의 실거래가에 대한 정보를 최대한 이용하기 위해 실거래가의 평균 뿐만 아니라 그 분포까지 고려할 수 있도록 전통적인 형태의 데이터를 히스토그램 형태의 데이터로 변환하여 분석을 하였다. 히스토그램 데이터는 심볼릭 데이터의 한 종류이고, 심볼릭 데이터는 기본적으로 구간, 목록, 히스토그램, 분포, 모형 등과 같이 데이터 자체가 내부적인 변동을 갖는 모든 형태의 데이터를 포함한다. 이러한 각 행정동들의 내부적인 매매가의 변동을 고려한 군집분석의 결과 강남구, 서초구, 송파구와 그에 인접한 행정동들이 상대적으로 다른 지역보다 매매가도 높았고 실거래가의 분포도 훨씬 더 넓은 것으로 조사되었다. 전반적으로 도심에 대한 접근성이 좋고 교육환경이 우수한 지역과 강북의 뉴타운 지역이 상대적으로 주변지역보다 더 높고 넓은 매매가 분포를 보이는 것으로 분석되었다.
본 연구에서는 음성인식기 성능향상을 위한 영상기반 음성구간 검출방법을 제안한다. 기존의 광류기반 방법은 조도변화에 대응하지 못하고 연산량이 많아서 이동형 플렛홈에 적용되는 스마트 기기에 적용하는데 어려움이 있고, 카오스 이론 기반 방법은 조도변화에 강인하지만 차량 움직임 및 입술 검출의 부정확성으로 인해 발생하는 오검출이 발생하는 문제점이 있다. 본 연구에서는 기존 영상기반 음성구간 검출 알고리즘의 문제점을 해결하기 위해 지역 분산 히스토그램(Local Variance Histogram, LVH)과 적응적 문턱값 추정 방법을 이용한 음성구간 검출 알고리즘을 제안한다. 제안된 방법은 조도 변화에 따른 픽셀 변화에 강인하고 연산속도가 빠르며 적응적 문턱값을 사용하여 조도변화 및 움직임이 큰 차량 운전자의 발화를 강인하게 검출할 수 있다. 이동중인 차량에서 촬영한 운전자의 동영상을 이용하여 성능을 측정한 결과 제안한 방법이 기존의 방법에 비하여 성능이 우수함을 확인하였다.
본 논문에서는 동영상의 장면전환점 중 급진적인 장면전환점인 컷(cut)과 점진적인 장면전환점인 페이드(fade)와 디졸브(dissolve) 구간을 웨이블릿 변환영역에서 검출하는 알고리즘을 제안한다. 웨이블렷 변환을 이용한 기존의 연구들은 공간영역과 변환영역 각각의 특징을 이용하여 장면전환점을 검출한다. 그러나 본 논문은 입력된 컬러영상을 먼저 YW 공간으로 변환하고, Y 성분에 대해 리프팅기법을 적용하여 2 레벨 웨이블릿 변환 후, 변환영역에서 공간영역의 특징이 유지되는 저주파 부대역을 히스토그램 비교하고, 나머지 고주파 부대역에서 추출된 에지 정보를 전체(global), 부분(semi-global), 국부(local) 영역으로 정의하여 웨이블릿 에지 히스토그램 비교를 한다. 모의실험 결과 기존의 방법보다 recall에서는 약 17%, precision에서는 약 18%의 성능향상을 보였으며 점진적인 장면 전환점인 페이드와 디졸브 구간 검출에도 좋은 성능을 나타내었다.
최근 인터넷에 유통되는 유해영상이 급증하면서 이들을 자동으로 차단하는 컴퓨터비전 기술의 연구가 활발히 이루어지고 있다. 본 논문에서는 피부색상을 이용한 유해영상 분류도구를 연구 및 개발한다. 제안하는 분류도구는 2단계로 구성되며, 1단계에서는 피부색 분류기를 이용하여 입력영상에서 피부색 영역을 검출하고, 2단계에서는 영역특징 분류기를 이용하여 앞서 검출된 피부색 영역의 비율과 위치 특징을 무해 또는 유해로 분류한다. 피부색 분류기는 히스토그램 모델에 기반하여 무해영상과 유해영상의 RGB 값으로 학습되며, 영역특징 분류기는 SVM(Support Vector Machine)에 기반하여 영상의 29개 지역의 피부색 비율로 학습된다. 실험결과 제안하는 분류기는 92.80%의 검출율(Detection Rate)과 6.73%의 양성오류율(False Positive Rate)을 나타내었다.
최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.
본 논문은 블랙박스 적용을 위한 적응형 히스토그램 스트레칭 알고리즘을 제안하였다. 본 알고리즘은 자동차 개인 저장장치 영상을 이용한 차량 번호판 검출을 위한 전처리 단계로 사용하였다. 제안 방식은 확률밀도함수(PDF: Probability Density Function)와 누적분포함수(CDF: Cumulative Density) 이용하여 영상의 밝기 분포도를 분석하였다. 이 두 함수는 일정한 간격을 두고 샘플링 한 영상을 사용하여 구하였다. 두 함수를 이용하여 영상의 특성을 분석하여, 특정 인자를 검출하였다. 검출된 인자를 분포도에 따라 각각 다른 스트레칭을 수행하였다. 알고리즘 검증은 촬영 된 자동차 개인 저장장치 영상을 사용하였다. 기존 알고리즘 비교는 시각적인 평가, 히스토그램 분포, 표준 및 표준 편차 값을 분석하였다. 또한 시뮬레이션 결과를 자동차 번호판 인식 알고리즘에 적용하여 번호판 인식율을 분석하였다. 기존 알고리즘보다 열화 현상이 적게 나타났고, 향상된 콘트라스트 값을 통하여, 차량 번호판 검출에서 기존 알고리즘보다 정확한 위치가 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.