• Title/Summary/Keyword: refraction seismics

Search Result 3, Processing Time 0.016 seconds

Three-dimensional Seismic Refraction Travel Time Tomography for Dipping Two Layers (경사 2층 구조를 위한 3차원 굴절탄성파 주시 토모그래피)

  • Cho Dong-heng;Cho Kwang-ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 1998
  • This paper deals with tomographic travel time inversion of three dimensional seismic refraction survey conducted over a dipping interface. The slowness, and thus velocity as its reciprocal, distribution on the subsurface interface is to be determined applying an ART with under-relaxtion parameter. The models chosen are realistic, i.e., most likely to be met in engineering seismics, and the interface includes anomalous zones. It is found that, generally speaking, the inversion could be misleading or meaningless without the correction of the dip of the interface. This is rather surprising when we recall that usual assumption for the interpretation of refraction seismics data is the horizontal attitude of structures within the limit of $15^{\circ}$ dip or so. To make the present method tenable for a new means of routine seismics, some practical ways of identifying head wave arrivals are to be devised.

  • PDF

탄성파 탐사를 이용한 전곡리 퇴적층 조사

  • 최광희;김종욱
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.33-38
    • /
    • 2003
  • '탄성파 굴절법 탐사(Seismic Refraction Method 또는 Refraction Seismics)'는 20세기 초부터 석유탐사와 암염돔 탐사 등 지하 자원 탐사에 널리 이용되어 왔으며, 오늘날에도 여러 지구물리학적 탐사와 더불어 지하구조 해석 및 각종 탐사와 지반공학에 활용되고 있다(Palmer, 1986). 특히 지질학은 물론, 고고학 등 지형학의 유관 학문에서도 그 활용 사례가 증가하고 있는데, 비파괴적인 방법으로 지하구조에 대한 정보를 비교적 용이하게 얻을 수 있기 때문이다. (중략)

  • PDF

Reconstruction of the Volcanic Lake in Hanon Volcano Using the Spatial Statistical Techniques (공간통계기법을 이용한 하논화산의 화구호 복원)

  • Choi Kwang-Hee;Yoon Kwang-Sung;Kim Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.391-403
    • /
    • 2006
  • The Hanon volcano located in the southern pan of Cheju Island, Korea has a wetland in its crater being used as a farmland. Previous researchers presumed this wetland was a maar lake in the past. Based on the seismic refraction method, the wetland sediment layer was estimated between 5 to 14 m deep, which is mostly in accordance with previous researches. However, this shows only the depths at some sites, not representing the whole spatial distribution. This study is an attempt to reconstruct the volcanic lake in Hanon crater by applying the spatial statistical techniques based on the depth information from the seismic survey and known data. The procedure of reconstruction is as follows: First, the depth information from the seismic survey and known data were collected and it was interpolated by IDW and Ordinary Kriging method. Next, with the interpolation map and the present DEM the paleo DEM was constructed. Finally, using the paleo lake level on core data, the boundary of volcanic lake was extracted from the paleo DEM. The reconstructed lake resembles a half-moon in the north of the central scoria cone. It is estimated that the lake was 5 m deep on average and 13 m deep at the deepest point. Although there are slight differences according to the interpolation techniques, it is calculated that the area of the lake was between 184,000 and $190000m^2,$ and its volume approximately $869,760m^3$. Because of the continuous deposition processes after the crater formation, the reconstructed volcanic lake would not indicate an actual lake at a specific time. Nevertheless, it offers a significant clue regarding the inner morphology and evolution of the crater.