• Title/Summary/Keyword: refolding

Search Result 119, Processing Time 0.028 seconds

A Fusion Tag to Fold on: The S-Layer Protein SgsE Confers Improved Folding Kinetics to Translationally Fused Enhanced Green Fluorescent Protein

  • Ristl, Robin;Kainz, Birgit;Stadlmayr, Gerhard;Schuster, Heinrich;Pum, Dietmar;Messner, Paul;Obinger, Christian;Schaffer, Christina
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.9
    • /
    • pp.1271-1278
    • /
    • 2012
  • Genetic fusion of two proteins frequently induces beneficial effects to the proteins, such as increased solubility, besides the combination of two protein functions. Here, we study the effects of the bacterial surface layer protein SgsE from Geobacillus stearothermophilus NRS 2004/3a on the folding of a C-terminally fused enhanced green fluorescent protein (EGFP) moiety. Although GFPs are generally unable to adopt a functional confirmation in the bacterial periplasm of Escherichia coli cells, we observed periplasmic fluorescence from a chimera of a 150-amino-acid N-terminal truncation of SgsE and EGFP. Based on this finding, unfolding and refolding kinetics of different S-layer-EGFP chimeras, a maltose binding protein-EGFP chimera, and sole EGFP were monitored using green fluorescence as indicator for the folded protein state. Calculated apparent rate constants for unfolding and refolding indicated different folding pathways for EGFP depending on the fusion partner used, and a clearly stabilizing effect was observed for the SgsE_C fusion moiety. Thermal stability, as determined by differential scanning calorimetry, and unfolding equilibria were found to be independent of the fused partner. We conclude that the stabilizing effect SgsE_C exerts on EGFP is due to a reduction of degrees of freedom for folding of EGFP in the fused state.

Solid-phase refolding of immobilized enterokinase for fusion protein cleavage

  • Kim, Min-Young;Na, Sea-Jin;Suh, Chang-Woo;Kim, Chang-Ho;Lee, Na-Hyun;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.555-559
    • /
    • 2003
  • EK를 고정화하기 위해 니켈 친화결합 방법과 공유 결합형 고정화 방법을 수행하였으며 니켈 친화결합이 공유 결합형 고정화보다 높은 고정화 수율과 activity를 나타냈다. 풀림과 재접힘을 이용한 효소의 활성 회복은 공유결합형 고정화가 니켈 친화결합보다 높은 결과를 나타내었다. 또한 기질의 분자량 크기에 따른 절단율의 차이가 없었으므로 레진 공극 내부로의 확산도 차이에 의한 절단반응의 차이는 없는 것으로 나타났고, 기질 종류에 따른 EK의 활성은 작은 기질이 큰 기질보다 높은 활성을 보였다.

  • PDF

Refolding of Acid-Unfolded Globin to Hemoglobin

  • Lee Jong-Woo
    • Biomedical Science Letters
    • /
    • v.11 no.1
    • /
    • pp.85-88
    • /
    • 2005
  • Hemoglobin is oxygen carrier protein within erythrocyte in blood. Apoprotein of this, globin, is synthesized in the cytosol but it's cofactor, heme, is synthesized in the mitochondria. It has not been known very well how globin receives the heme from mitochondria and folds to hemoglobin. In this folding process, the initial structure of globin seems to be very important. A small volume of globin at acid pH was added rapidly into the bulk of an egg phosphatidylcholine $60\%$ liposome, containing hemins, at neutral pH according to the Rapid Dilution method. It was observed that an acid-induced unfolding structure of globin is initially needed to receive hemins from the lipid bilayer of liposomes. Also, this conclusion was confirmed with the absorption spectrum of the refolded globin separated by centrifugation.

  • PDF

Soluble Expression and Purification of Human Tissue-type Plasminogen Activator Protease Domain

  • Lee, Hak-Joo;Im, Ha-Na
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2607-2612
    • /
    • 2010
  • Human tissue-type plasminogen activator (tPA) is a valuable thrombolytic agent used to successfully treat acute myocardial infarction, thromboembolic stroke, peripheral arterial occlusion, and venous thromboembolism. Recombinant tPA is accumulated as an inactive form in inclusion bodies of E. coli and is refolded in vitro, which is accompanied by extensive aggregation. In the present study, a tPA protease domain was expressed in an active soluble form in the cytosol of E. coli Rosetta-gami cells, which allowed disulfide bond formation and supplied the tRNA molecules required for six rarely used codons in E. coli. This strategy increased the amount of soluble protease domain protein and avoided the cumbersome refolding process. The purified protease domain not only degraded tPA substrate peptides but also formed a covalently bound complex with plasminogen activator inhibitor-1, as does full-length tPA. Soluble expression and purification of tPA domains may aid in functional analyses of this multi-domain protein, which has been implicated in many physiological and pathological processes.

Mini-proinsulins with a beta-turn motif

  • Chang, Seung-Gu;Kim, Dae-Young;Kim, Young-Sook;Park, Ki-Doo;Shin, Jae-Min;Shin, Hang-Cheol
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.41-48
    • /
    • 1995
  • To increase the folding efficiency of proinsulin, we have designed a series of mini-proinsulins having the central C-peptide region replaced with sequences forming reverse turns. These proteins were produced as fusion proteins in E. coli in the form of inclusion bodies. After isolation process of the sulfonated mini-proinsulins, the subsequent refolding experiments indicate that the mini-proinsulins, with non-native penta-peptide sequences inserted between two of the enzyme processing sites, show substantially increased folding yields compared with the proinsulin. The correct disulfide connections were verified by fingerprint analysis using Glu-C endoproteinase. These novel mini-proinsulins could be used for the study of folding mechanism of proinsulin.

  • PDF

Purification and Characterization of Peptidyl Prolyl cis-trans Isomerase (PPlase) from Bacillus stearothermophilus SIC1

  • KIM Dong-Ju
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.6
    • /
    • pp.728-735
    • /
    • 1995
  • The peptidyl prolyl cis-trans isomerase(PPlase, EC 5.2.2.8) from Bacillus stearothermophilus SIC1 was extracted from the cells treated with by lysozyme. PPlase was purified from the cell extracts by heat treatment, ammonium sulfate precipitation, ion exchange chromatography and finally gel filtration (FPLC). The purity of purified the enzyme after Superose 12 column chromatography was examined by sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE). The molecular weight of the purified PPlase was estimated as 18,000 by SDS-PAGE. The 39 amino acid residues from the N-terminus were determined by the protein sequencer. The enzyme showed the optimum pH at 8.0 and was stable at the range of pH 7.0 to 8.0. The enzyme was considerably stable after heat treatment at $60^{\circ}C$ for 30 minutes, and the enzyme was quite stable up to $65^{\circ}C$. The presence of the PPlase in the refolding solution accelerated the isomerization rate of the assay peptide.

  • PDF

Identification of Recombinant Subtilisins

  • CHOI , NACK-SHICK;YOO, KI-HYUN;YOON, KAB-SEOG;CHANG, KYU-TAE;MAENG, PIL-JAE;KIM, SEUNG-HO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2005
  • To identify the activity of recombinant subtilisins (subtilisin BPN' and subtilisin Carlsberg), three different zymography methods, SDS-fibrin zymography (SDS-FZ), reverse fibrin zymography (RFZ), and isoelectric focusingfibrin zymography (IEF-FZ), were used. The recombinant subtilisins BPN' and Carlsberg did not migrate into the electrophoretic field based on a Laemmli buffer system, instead forming a "binding mode" at the top part of the separating gels with the SDS-FZ and RFZ techniques. Yet, this problem was resolved when using IEF-FZ with a pH range from 3 to 10. In addition, all these methods enabled the activity of a recombinant pro-subtilisin DJ-4 to be detected without a refolding pathway.

Bioinformatics Analysis of Hsp20 Sequences in Proteobacteria

  • Heine, Michelle;Chandra, Sathees B.C.
    • Genomics & Informatics
    • /
    • v.7 no.1
    • /
    • pp.26-31
    • /
    • 2009
  • Heat shock proteins are a class of molecular chaperones that can be found in nearly all organisms from Bacteria, Archaea and Eukarya domains. Heat shock proteins experience increased transcription during periods of heat induced osmotic stress and are involved in protein disaggregation and refolding as part of a cell's danger signaling cascade. Heat shock protein, Hsp20 is a small molecular chaperone that is approximately 20kDa in weight and is hypothesized to prevent aggregation and denaturation. Hsp20 can be found in several strains of Proteobacteria, which comprises the largest phyla of the Bacteria domain and also contains several medically significant bacterial strains. Genomic analyses were performed to determine a common evolutionary pattern among Hsp20 sequences in Proteobacteria. It was found that Hsp20 shared a common ancestor within and among the five subclasses of Proteobacteria. This is readily apparent from the amount of sequence similarities within and between Hsp20 protein sequences as well as phylogenetic analysis of sequences from proteobacterial and non-proteobacterial species.

Partially Folded States of Mutant Ubiquitin in Mild Denaturing Conditions

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1567-1572
    • /
    • 2009
  • Conformational change of ubiquitin variant with valine to alanine mutation at sequence position 26 was studied by varying solvent pH. Fluorescence emission spectra indicated that this variant ubiquitin has some residual structures in acidic and basic solution as compared to denaturant-induced unfolded state. Far-UV circular dichroic spectra indicated that the base-denatured state had more secondary structure than the acid-denatured state. Near-UV circular dichroic spectra indicated that the aromatic side-chains were in the relatively more rigid environment in the base-denatured state than those in the acid-denatured state. Although it appears that the more tertiary structure present in the base-denatured state, refolding reactions measured by stopped-flow fluorescence device suggest that both the acid- and base-denatured states occur before the major folding transition state. The acid- and base-denatured states are considered to reflect the early event of protein folding process.