• Title/Summary/Keyword: reflection of light

Search Result 582, Processing Time 0.023 seconds

Improvement in LED structure for enhanced light-emission

  • Park, Seong-Ju
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.21-21
    • /
    • 2003
  • To increase the light-emission efficiency of LED, we increased the internal and external quantum efficiency by suppressing the defect formation in the quantum well and by increasing the light extraction efficiency in LED, respectively. First, the internal quantum efficiency was improved by investigating the effect of a low temperature (LT) grown p-GaN layer on the In$\sub$0.25/GaN/GaN MQW in green LED. The properties of p-GaN was optimized at a low growth temperature of 900oC. A green LED using the optimized LT p-type GaN clearly showed the elimination of blue-shift which is originated by the MQW damage due to the high temperature growth process. This result was attributed to the suppression of indium inter-diffusion in MQW layer as evidenced by XRD and HR-TEM analysis. Secondly, we improved the light-extraction efficiency of LED. In spite of high internal quantum efficiency of GaN-based LED, the external quantum efficiency is still low due to the total internal reflection of the light at the semiconductor-air interface. To improve the probability of escaping the photons outside from the LED structure, we fabricated nano-sized cavities on a p-GaN surface utilizing Pt self-assembled metal clusters as an etch mask. Electroluminescence measurement showed that the relative optical output power was increased up to 80% compared to that of LED without nano-sized cavities. I-V measurement also showed that the electrical performance was improved. The enhanced LED performance was attributed to the enhancement of light escaping probability and the decrease of resistance due to the increase in contact area.

  • PDF

Two-dimensional model simulation for reflectance of single crystalline silicon solar cell (단결정 실리콘 태양전지 2차원 모델의 반사율 시뮬레이션)

  • Lee, Sang-Hun;Kang, Gi-Hwan;Yu, Gwon-Jong;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.237-242
    • /
    • 2012
  • At present, crystalline solar cells take up a significant percentage of the solar industry. The ways of increasing the efficiency of crystalline solar cell are texturing and AR(Anti-Reflection) coating, and the purpose of these technologies is to increase the amount of available light on the solar cell by reducing the reflectivity. The reflectance of crystalline silicon solar cell combined with such technologies will be able to predict using the proposed simulation in this paper. The simulation algorithm was made using MATLAB, and it is a combination of the theories of reflection in textured wafer and in anti-reflection coated wafer. The simulation results were divided into three wavelength band and were compared with actual reflectance measured by a spectrometer. The wavelength band from 300 to 380 was named ultraviolet region and the wavelength band from 380 to 780 is named visible region. Finally, the wavelength band from 780 to 1200 named infrared region. When compared with measured reflection data, the simulation results had a small error from 0.4 to 0.5[%] in visible region. The error occurred in the rest two regions is larger than visible region. The extreme error occurred the infrared region is due to internal reflection effect, but in the ultraviolet region, the rationale on reduction phenomenon of reflectance occurred in small range did not proved. If these problem will be solve, this simulation will have high reliability more than now and be able to predict the reflectance of solar cells.

  • PDF

A Study on the Performance Improvement of a 3-D Shape Measuring System Using Adaptive Pattern Clustering of Line-Shaped Laser Light (선형레이저빔의 적응적 패턴 분할을 이용한 3차원 표면형상 측정 장치의 성능 향상에 관한 연구)

  • Park, Seung-Gyu;Baek, Seong-Hun;Kim, Dae-Gyu;Jang, Won-Seok;Lee, Il-Geun;Kim, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.10
    • /
    • pp.119-124
    • /
    • 2000
  • One of the main problems in 3D shape measuring systems that use the triangulation of line-shaped laser light is precise center line detection of line-shaped laser stripe. The intensity of a line-shaped laser light stripe on the CCD image varies following to the reflection angles, colors and shapes of objects. In this paper, a new center line detection algorithm to compensate the local intensity variation on a line-shaped laser light stripe is proposed. The 3-D surface shape measuring system using the proposed center line detection algorithm can measure 3-D surface shape with enhanced measurement resolution by using the dynamic shape reconstruction with adaptive pattern clustering of the line-shaped laser light. This proposed 3-D shape measuring system can be easily applied to practical situations of measuring 3-D surface by virtue of high speed measurement and compact hardware compositions.

  • PDF

A Study on the Implementation of Transmission type PPG Measurement Device in a Wrist Watch (손목시계 형태의 투과형 PPG 측정 장치의 구현에 관한 연구)

  • Kim, Namsub
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.10 no.2
    • /
    • pp.161-167
    • /
    • 2017
  • This paper presents an effective PPG measurement device in a wrist watch for smart healthcare. PPG can be acquired by measuring absorption of light and PPG measurement device is classified as transmission and reflection type. Reflection type is easy to implement but vulnerable to motion artifact. Moreover, reflection type must use 2 hands at once if the device is implemeted in a wrist watch. This paper describes the implementation of robust transmission type PPG measurement device by using previous developed reflection type device. PPG sensor is clip type and can be separated from the device so that the influence of motion artifact can be reduced. The proposed device can transmit the measured signal in real-time and is useful for smart healthcare. For evaluation of the proposed device, PPG signals are compared with reflection type in the same condition. The results show that the proposed device has 20% improvement in performance.

A Study on Lighting Performance Evaluation of Light-Shelf using Crystal Face (결정면 적용 광선반 채광성능 평가 연구)

  • Lee, Heangwoo;Rogers, Kyle Eric;Seo, Janghoo;Kim, Yongseong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.8
    • /
    • pp.395-401
    • /
    • 2015
  • Recently, many research studies have been carried out on the efficiency of light-shelf daylighting systems, especially comparing performance improvements and the limitations of reflective surfaces and their lighting performance. In this study, a crystal face reflective surface is proposed. The objective of the study is to evaluate the lighting performance of a crystal face light-shelf through a performance study. The performance study was carried out in a full scale test-bed in order to calculate the light distribution and energy consumption utilizing the standard indoor illumination as an index. The conclusions of the performance study are as follows. 1) The optimal angle of incidence for daylighting for both the operable flat type light-shelf and the crystal face light-shelf are taken in the natural environment on the dates of the winter and summer solstices, as well as the autumn and spring equinoxes. 2) The application and installation of the crystal face light-shelf can produce a 29.9%~34.3% increase of light distribution within the indoor space. However, the increase of light distribution can also lead to a decrease in the uniformity ratio, a design challenge that should be considered when applying a crystal face light-shelf. 3) It is possible to achieve a 7.98%~13.3% greater reduction in energy consumption when applying a crystal face light-shelf than when applying a flat type light-shelf. The increase in the number of crystal faces should concur with the analysis of the energy reduction. A limitation of the study is that only one predetermined pattern was performance tested for a crystal face light-shelf. In order to carry out further research on crystal face light-shelves, additional performance studies are needed based on alternative patterns and designs.

Removing Lighting Reflection under Dark and Rainy Environments based on Stereoscopic Vision (스테레오 영상 기반 야간 및 우천시 조명 반사 제거 기술)

  • Lee, Sang-Woong
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.2
    • /
    • pp.104-109
    • /
    • 2010
  • The lighting reflection is a common problem in image analysis and causes the many difficulties to extract distinct features in related fields. Furthermore, the problem grows in the rainy night. In this paper, we aim to remove light reflection effects and reconstruct a road surface without lighting reflections in order to extract distinct features. The proposed method utilizes a 3D analysis based on a multiple geometry using captured images, with which we can combine each reflected areas; that is, we can remove lighting reflection effects and reconstruct the surface. At first, the regions of lighting sources and reflected surfaces are extracted by local maxima based on vertically projected intensity-histograms. After that, a fundamental matrix and homography matrix among multiple images are calculated by corresponding points in each image. Finally, we combine each surface by selecting minimum value among multiple images and replace it on a target image. The proposed method can reduces lighting reflection effects and the property on the surface is not lost. While the experimental results with collected data shows plausible performance comparing to the speed, reflection-overlapping areas which can not be reconstructed remain in the result. In order to solve this problem, a new reflection model needs to be constructed.

Evaluation of the Photon Transmission Efficiency of Light Guides Used in Scintillation Detectors Using LightTools Code

  • Park, HyeMin;Joo, Koan Sik;Kim, Jeong Ho;Kim, Dong Sung;Park, Ki Hyun;Park, Chan Jong;Han, Woo Jun
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.282-285
    • /
    • 2016
  • Background: To optimize the photon transmission efficiency of light guides used in scintillation detectors, LightTools code, which can construct and track light, was used to analyze photon transmission effectiveness with respect to light guides thickness. Materials and Methods: This analysis was carried out using the commercial light guide, N-BK 7 Optical Glass by SCHOTT, as a model for this study. The luminous exitance characteristic of the LYSO scintillator was used to analyze the photon transmission effectiveness according to the thickness of the light guide. Results and Discussion: The results of the simulations showed the effectiveness of the photon transmission according to the thickness of the light guide, which was found to be distributed from 13.38% to 33.57%. In addition, the photon transmission efficiency was found to be the highest for light guides of 4 mm of thickness and a receiving angle of $49^{\circ}$. Conclusion: Through such simulations, it is confirmed that photon transmission efficiency depends on light guide thickness and subsequent changes in the internal angle of reflection. The aim is to produce an actual light guide based on these results and to evaluate its performance.

UBV PHOTOMETRY AT THE OUTSIDE ECLIPSE PHASE OF AZ CASSIOPEIAE

  • Nha, Il-Seong
    • Journal of Astronomy and Space Sciences
    • /
    • v.11 no.1
    • /
    • pp.21-30
    • /
    • 1994
  • VV Cep-type long period spectroscopic-eclipsing binary AZ Cas has been observed for five years, 1985 Oct~1990 Feb, UBV at the Ilsan Station of Yonsei University Observatory. A total of 431 observations (U=129, B=142 and V=160) are made for 86 nights. Instrumental differential UBV and B-V light curves made with these observations cover phases nearly a half of one period. There is no appreciable light variation in V but in other two passbands a gradual decrease of the brightness is clearly noticed. The loss of light in B resulted in a reddening in $\Delta(B-V)$ by + 0.06 at phases between 0.4~0.5 as compared with that of at phase ~0.1. This intrinsic reddening arouses a question why at the orbital phase of the transit of a hot star in front of a cool M supergiant the heating of the facing hemisphere of M supergiant by the strong radiation from the B stat is absent. With regard to this unusual situation we propose a hypothesis that a large amount of gas stream of low temperature ejected from the surface of M supergiant component towards the B star dominates the brightness of B star and the reflection effect.

  • PDF

Photoelectric Obsrvations of RS Canum Venaticorum

  • Lee, Yong-Sam;Jeong, Jang-Hae
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.55-65
    • /
    • 1984
  • A total of 618 photoelectric observations (302 in yellow and 316 in bule) is made in 1982 at the Yonsei University Observatory. Except that of the secondary eclipse the homogeneous coverage of observations successfully secured B, V, and B-V light curves. Enhanced distortions in the light curves are appeared at the phases aroung $0.^P1$, which supports the wave-like migration period of 9.7 years(Rodono 1981). One epoch time of the primary minimum was made by combining the observations in three nights. This minimum time shows that the O-C values are still decreasing and there seems to indication of increasing. B and V light curves of the primary minimum are in strong asymmetry which show less luminous in the third and fourth contacts compared to those of the first and second ones. This asymmetry may be as a result of the reflection of the wave minimum at $0.^P1$, and B-V curve also shows asymmetry, redder at the third contact than the second one by about $0.^m04$. This color difference apperature distribution on the surface of cooler, larger component(KO IV star).

  • PDF

Shape Recognition of a BGA Ball using Ring Illumination (링 조명에 의한 BGA 볼의 3차원 형상 인식)

  • Kim, Jong Hyeong;Nguyen, Chanh D.Tr.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.960-967
    • /
    • 2013
  • Shape recognition of solder ball bumps in a BGA (Ball Grid Array) is an important issue in flip chip bonding technology. In particular, the semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding as the density of balls has increased dramatically. The difficulty of this issue comes from specular reflection on the metal ball. Shape recognition of a metal ball is a very realproblem for computer vision systems. Specular reflection of the metal ball appears, disappears, or changes its image abruptly due to tiny movementson behalf of the viewer. This paper presents a practical shape recognition method for three dimensional (3-D) inspection of a BGA using a 5-step ring illumination device. When the ring light illuminates the balls, distinctive specularity images of the balls, which are referred to as "iso-slope contours" in this paper, are shown. By using a mathematical reflectance model, we can drive the 3-D shape information of the ball in aquantitative manner. The experimental results show the usefulness of the method for industrial application in terms of time and accuracy.