• 제목/요약/키워드: reflectance model

Search Result 331, Processing Time 0.031 seconds

The Influence of the Reflected Arc Light on Vision Sensors for Welding Process Autimation (물체의 반사성질이 용접자동화용 시각센서의 아크노이즈에 미치는 영향에 관한 연구)

  • 이철원;나석주
    • Journal of Welding and Joining
    • /
    • v.13 no.1
    • /
    • pp.115-126
    • /
    • 1995
  • Vision sensors using the optical triangulation have been widely used for automatic welding systems in various ways, but their reliability is seriously affected by presence of the arc noise. The reliability of vision sensors was analyzed with variation of the arc noise by considering the reflectance of the base metal. first, the properties of the base metal's reflection were modelled by using the Bidirectional Reflectance-Distribution Function(BRDF), and then the variation of the reflected arc intensity was formulated for various configurations of the torch, base metal, and sensor. The experimental data of the gray level of the reflected arc light were obtained for two materials, mild steel and stainless steel. It was found that the results calculated from the proposed model were in good agreement with the experimental data.

  • PDF

Prediction of Soluble Solid and Firmness in Apple by Reflectance Spectroscopy

  • Park, Chang-Hyun;Judith.A.Abbott
    • Near Infrared Analysis
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • The objectives of this study were to examine the ability to predict soluble solid and firmness in intact apple based on the visible/near-infrared spectroscopic technique. Two cultivars of apples, Delicious and Gala, were handled, tested and analyzed. Reflectance spectra, Magness-Taylor (MT) Firmness, and soluble solids in apples were measured sequentially. Maximum and minimum diameters, height, and weight of apples were recorded before the MT firmness tests. Apple samples were divided in to a calibration set and a validation set. The method of partial least squares (PLS) analysis was used. a unique set of PLS loading vectors (factors) was development for soluble solid and firmness. The PLS model showed good relationship between predicted and measured soluble solids in intact apples in the wavelength range of 860∼1078 nm. However, the PLS analysis was not good enough to predict the apple firmness.

Development of a Constituent Prediction Model of Domestic Rice Using Near Infrared Reflection Analyzer (II)-Prediction of Brown and Milled Rice Protein Content and Brown Rice Yield from Undried Paddy (근적외선 분석계를 이용한 국내산 쌀의 성분예측모델 개발(II)-생벼를 이용한 현미.백미의 단백질 함량과 현미수율 예측)

  • ;;J.R. Warashina
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1998.06b
    • /
    • pp.171-177
    • /
    • 1998
  • The part Ⅰ was for developing regression models to predict the moisture content, protein content and viscosity of brown and milled rice using Near Unfrared (NIR) Reflectance analyzer. The purpose of this study(part Ⅱ) is to measure fundamental data required for the prediction of rice quality , and to develop regression models to predict the protein content of brown and milled rice, brown rice yield from undreid paddy powder by using Near Infrared (NIR) Reflectance analyzer. The results of this study were summarized as follows . The predicted values of protein contents obtained from the undried paddy powder were will correlated to the measured values from brown and milled rice. The predicted yields of brown rice from undried paddy powder were not well correlated to be lab measured values from dried paddy. Continuous study in wavelength selection and of constituent relationship is necessary for practical application.

  • PDF

DEVELOPMENT OF ATMOSPHERIC CORRECTION ALGORITHM FOR HYPERSPECTRAL DATA USING MODTRAN MODEL

  • Kim, Sun-Hwa;Kang, Sung-Jin;Ji, Jun-Hwa;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.619-622
    • /
    • 2006
  • Atmospheric correction is one of critical procedures to extract quantitative information related to biophysical variables from hyperspectral data. In this study, we attempted to generate the water vapor contents image from hyperspectral data itself and developed the atmospheric correction algorithm for EO-1 Hyperion data using pre-calculated atmospheric look-up-table (LUT) for fast processing. To apply the new atmospheric correction algorithm, Hyperion data acquired June 3, 2001 over Seoul area is used. Reflectance spectrums of various targets on atmospheric corrected Hyperion reflectance images showed the general spectral pattern although there must be further development to reduce the spectral noise.

  • PDF

B-spline Volume BRDF Representation and Application in Physically-based Rendering (물리기반 렌더링에서의 비스플라인 볼륨 BRDF 표현과 응용)

  • Lee, Joo-Haeng;Park, Hyung-Jun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.6
    • /
    • pp.469-477
    • /
    • 2008
  • Physically-based rendering is an image synthesis technique based on simulation of physical interactions between light and surface materials. Since generated images are highly photorealistic, physically-based rendering has become an indispensable tool in advanced design visualization for manufacturing and architecture as well as in film VFX and animations. Especially, BRDF (bidirectional reflectance distribution function) is critical in realistic visualization of materials since it models how an incoming light is reflected on the surface in terms of intensity and outgoing angles. In this paper, we introduce techniques to represent BRDF as B-spline volumes and to utilize them in physically-based rendering. We show that B-spline volume BRDF (BVB) representation is suitable for measured BRDFs due to its compact size without quality loss in rendering. Moreover, various CAGD techniques can be applied to B-spline volume BRDFs for further controls such as refinement and blending.

RADIOMETRIC CHARACTERISTICS OF KOMPSAT-2 HIGH RESOLUTION IMAGES

  • Chi, Jun-Hwa;Yoon, Jong-Suk;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.390-393
    • /
    • 2007
  • KOMPSAT-2, the first Korean high resolution earth observing satellite, continuously acquires high resolution images since July 2006. The quality of satellite images should be geometrically and radiometrically ensured before distribution to users. This study focused on absolute radiometric calibration which is a prerequisite procedure to ensure the radiometric quality of optical satellite images. In this study, we performed reflectance-based vicarious calibration methods on several uniform targets collected through several field campaigns in 2007. The radiative transfer model, MODTRAN, was used to estimate the amount of energy received at the sensor. The energy reached at the sensor are affected by several factors such as reflectance of targets, atmospheric condition, geometry condition between Sun and the sensor, etc. This study proposes the absolute radiometric calibration coefficients of KOMPSAT-2 MSC images combining several types of collected data through field works and tried to compare dynamic range of sensor-detected energy with other commercial high resolution sensors.

  • PDF

Retrieval Spectral Albedo using red and NIR band of SPOT/VGT

  • Lee, Chang Suk;Seo, Min Ji;Han, Kyung-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.367-373
    • /
    • 2014
  • Albedo is one of the critical parameters for understanding global climate change and energy/water balance. In this study, we used red and NIR reflectance from Satellite Pour I'Obervation de la Terre (SPOT)/Vegetation (VGT) S1 product. The product is preprocessed for users that they are atmospherically corrected using Simple Method Atmospheric Correction (SMAC) by Vision on Technology (VITO) for calculating broadband albedo. Roujean's Bi-directional Reflectance Distribution Function (BRDF) model is a semi-empirical method used for BRDF angular integration and inversion. Each kernel of Roujean's model was multi integrated by angle components (i.e., viewing zenith, solar zenith, and relative azimuth angle). Black-sky hemispherical function is integrated by observational angle; whereas, white-sky hemispherical efficient is integrated by incident angle. Estimated spectral albedo of red ($0.61{\sim}0.68{\mu}m$, B2) and near infrared ($0.79{\sim}0.89{\mu}m$, B3) have a good agreement with MODIS albedo products.

Inspection method of BGA Ball Using 5-step Ring Illumination (5층 링 조명에 의한 BGA 볼의 검사 방법)

  • Kim, Jong Hyeong;Nguyen, Chanh D.Tr.
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1115-1121
    • /
    • 2015
  • Fast inspection of solder ball bumps in ball grid array (BGA) is an important issue in the flip chip bonding technology. Particularly, semiconductor industry has required faster and more accurate inspection of micron-size solder bumps in flip chip bonding, as the density of balls increase dramatically. In this paper, we describe an inspection approach of BGA balls by using 5-step ring illumination device and normalized cross-correlation (NCC) method. The images of BGA ball by the illumination device show unique and distinguishable characteristic contours by their 3-D shapes, which are called as "iso-slope contours". Template images of reference ball samples can be produced artificially by the hybrid reflectance model and 3D data of balls. NCC values between test and template samples are very robust and reliable under well-structured condition. The 200 samples on real wafer are tested and show good practical feasibility of the proposed method.

POST-LAUNCH RADIOMETRIC CALIBRATION OF KOMPSAT2 HIGH RESOLUTION IMAGE

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Chi, Jun-Hwa;Lee, Dong-Han
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.402-405
    • /
    • 2006
  • Radiometric calibration of optical image data is necessary to convert raw digital number (DN) value of each pixel into a physically meaningful measurement (radiance). To extract rather quantitative information regarding biophysical characteristics of the earth surface materials, radiometric calibration is often essential procedure. A sensor detects the radiation of sunlight interacted atmospheric constituents. Therefore, the amount of the energy reaching at the sensor is quite different from the initial amount reflected from the surface. To achieve the target reflectance after atmospheric correct, an initial step is to convert DN value to at-sensor radiance. A linear model, the simplest radiometric model, is applied to averaged spectral radiance for this conversion. This study purposes to analyze the sensitivity of several factors affecting on radiance for carrying out absolute radiometric calibration of panchromatic images from KOMPSAT2 launched at July, 2006. MODTRAN is used to calculate radiance at sensor and reflectance of target is measured by a portable spectro-radiometer at the same time the satellite is passing the target for the radiometric calibration. As using different contents of materials composing of atmosphere, the differences of radiance are investigated. Because the spectral sensitivity of panchromatic images of KOMPSAT2 ranges from 500 to 900 nm, the materials causing scattering in visible range are mainly considered to analyze the sensitivity. According to the verified sensitivity, direct measurement can be recommenced for absolute radiometric calibration.

  • PDF

RETRIEVING AEROSOL AMOUNT FROM GEOSTATIONARY SATELLITE

  • Yoon, Jong-Min;Kim, Jhoon
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.232-235
    • /
    • 2006
  • Using 30 days of hourly visible channel data and DIScrete Ordinate Radiative Transfer (DISORT) model (6S), Aerosol optical depth (AOD) at $0.55{\mu}m$ was retrieved over the East Asia. In contrast with the AOD retrieval using low-earth-orbit satellites such as MODIS (Moderate-Res olution Spectroradiometer) or MISR (Multiangle Imaging SpectroRadiometer), this algorithm with geostationary satellite can improve the monitoring of AOD without the limitation of temporal resolution. Due to the limited number of channels in the conventional meteorological imager onboard the geostationary satellite, an AOD retrieval algorithm utilizing a single visible channel has been introduced. This single channel algorithm has larger retrieval error of AOD than other multiple-channel algorithm due to errors in surface reflectance and atmospheric property. In this study, the effects of manifold atmospheric and surface properties on the retrieval of AOD from the geostationary satellite, are investigated and compared with the AODs from AERONET and MODIS. To improve the accuracy of retrieved AOD, efforts were put together to minimize uncertainties through extensive sensitivity tests. This algorithm can be utilized to retrieve aerosol information from previous geostationary satellite for long-term climate studies.

  • PDF