• 제목/요약/키워드: refined shear deformation theory

검색결과 148건 처리시간 0.019초

Dynamic stress, strain and deflection analysis of pipes conveying nanofluid buried in the soil medium considering damping effects subjected to earthquake load

  • Abadi, M. Heydari Nosrat;Darvishi, H. Hassanpour;Nouri, A.R. Zamani
    • Computers and Concrete
    • /
    • 제24권5호
    • /
    • pp.445-452
    • /
    • 2019
  • In this paper, dynamic stress, strain and deflection analysis of concrete pipes conveying nanoparticles-water under the seismic load are studied. The pipe is buried in the soil which is modeled by spring and damper elements. The Navier-Stokes equation is used for obtaining the force induced by the fluid and the mixture rule is utilized for considering the effect of nanoparticles. Based on refined two variables shear deformation theory of shells, the pipe is simulated and the equations of motion are derived based on energy method. The Galerkin and Newmark methods are utilized for calculating the dynamic stress, strain and deflection of the concrete pipe. The influences of internal fluid, nanoparticles volume percent, soil medium and damping of it as well as length to diameter ratio of the pipe are shown on the dynamic stress, strain and displacement of the pipe. The results show that with enhancing the nanoparticles volume percent, the dynamic stress, strain and deflection decrease.

On thermally induced instability of FG-CNTRC cylindrical panels

  • Hashemi, Razieh;Mirzaei, Mostafa;Adlparvar, Mohammad R.
    • Advances in nano research
    • /
    • 제10권1호
    • /
    • pp.43-57
    • /
    • 2021
  • In this study, thermally induced bifurcation buckling of shallow composite cylindrical panels reinforced with aligned single-walled carbon nanotubes is investigated. Distribution of carbon nanotubes across the thickness of the cylindrical panel as reinforcements may be either uniform or functionally graded. Thermo-mechanical properties of the matrix and reinforcements are considered to be temperature dependent. Properties of the cylindrical panel are obtained using a refined micromechanical approach which introduces the auxiliary parameters into the rule of mixtures. The governing equations are obtained by using the static version of the Hamilton principle based on the first-order shear deformation theory and considering the linear strain-displacement relation. An energy-based Ritz method and an iterative process are used to obtain the critical buckling temperature of composite cylindrical panel with temperature dependent material properties. In addition, the effect of various parameters such as the boundary conditions, different geometrical conditions, distribution pattern of CNTs across the thickness and their volume fraction are studied on the critical buckling temperature and buckled pattern of cylindrical panels. It is shown that FG-X type of CNT dispersion is the most influential type in thermal stability.

Nonlinear vibration of FG-CNTRC curved pipes with temperature-dependent properties

  • Mingjie Liu;Shaoping Bi;Sicheng Shao;Hadi Babaei
    • Steel and Composite Structures
    • /
    • 제46권4호
    • /
    • pp.553-563
    • /
    • 2023
  • In the current research, the nonlinear free vibrations of curved pipes made of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) materials are investigated. It is assumed that the FG-CNTRC curved pipe is supported on a three-parameter nonlinear elastic foundation and is subjected to a uniform temperature rise. Properties of the curved nanocomposite pipe are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite pipe are temperature-dependent. The governing equations of the curved pipe are obtained using a higher order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the pipe. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved nanocomposite pipe. For the case of nanocomposite curved pipes which are simply supported in flexure and axially immovable, the motion equations are solved using the two-step perturbation technique. The closed-form expressions are provided to obtain the small- and large-amplitude frequencies of FG-CNTRC curved pipes rested on a nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of CNT distribution pattern, the CNT volume fraction, thermal environment, nonlinear foundation stiffness, and geometrical parameters on the fundamental linear and nonlinear frequencies of the curved nanocomposite pipe.

Buckling and free vibration analysis of multi-directional functionally graded sandwich plates

  • Ali, Alnujaie;Atteshamuddin S., Sayyad;Lazreg, Hadji;Abdelouahed, Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제84권6호
    • /
    • pp.813-822
    • /
    • 2022
  • In this article, the buckling and free vibration of multi-directional FGM sandwich plates are investigated. The material properties of FGM sandwich plates are assumed to be varying continuously in the in the longitudinal, transverse and thickness directions. The material properties are evaluated based on Voigt's micro-mechanical model considering power law distribution method with arbitrary power index. Equations of motion for the buckling and vibration analysis of multi-directional FGM sandwich plate are obtained based on refined shear deformation theory. Analytical solution for simply supported multidirectional FGM sandwich plate is carried out using Navier's solution technique. The FGM sandwich plate considered in this work has a homogeneous ceramic core and two functionally graded face sheets. Influence of volume fraction index in the longitudinal, transverse and thickness direction, layer thickness, and geometrical parameter over natural frequency and critical buckling load of multi-directional FGM sandwich plate is investigated. The finding shows a multi-directional functionally graded structures perform better compared to uni-directional gradation. Hence, critical grading parameters have been identified which will guide researchers in selecting fabrication routes for improving the performance of such structures.

Effects of micromechanical models on the dynamics of functionally graded nanoplate

  • Tao Hai;A. Yvaz;Mujahid Ali;Stanislav Strashnov;Mohamed Hechmi El Ouni;Mohammad Alkhedher;Arameh Eyvazian
    • Steel and Composite Structures
    • /
    • 제48권2호
    • /
    • pp.191-206
    • /
    • 2023
  • The present research investigates how micromechanical models affect the behavior of Functionally Graded (FG) plates under different boundary conditions. The study employs diverse micromechanical models to assess the effective material properties of a two-phase particle composite featuring a volume fraction of particles that continuously varies throughout the thickness of the plate. Specifically, the research examines the vibrational response of the plate on a Winkler-Pasternak elastic foundation, considering different boundary conditions. To achieve this, the governing differential equations and boundary conditions are derived using Hamilton's principle, which is based on a four-variable shear deformation refined plate theory. Additionally, the Galerkin method is utilized to compute the plate's natural frequencies. The study explores how the plate's natural frequencies are influenced by various micromechanical models, such as Voigt, Reuss, Hashin-Shtrikman bounds, and Tamura, as well as factors such as boundary conditions, elastic foundation parameters, length-to-thickness ratio, and aspect ratio. The research results can provide valuable insights for future analyses of FG plates with different boundaries, utilizing different micromechanical models.

Stochastic buckling quantification of porous functionally graded cylindrical shells

  • Trinh, Minh-Chien;Kim, Seung-Eock
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.651-676
    • /
    • 2022
  • Most of the experimental, theoretical, and numerical studies on the stability of functionally graded composites are deterministic, while there are full of complex interactions of variables with an inherently probabilistic nature, this paper presents a non-intrusive framework to investigate the stochastic nonlinear buckling behaviors of porous functionally graded cylindrical shells exposed to inevitable source-uncertainties. Euler-Lagrange equations are theoretically derived based on the three variable refined shear deformation theory. Closed-form solutions for the shell buckling loads are achieved by solving the deterministic eigenvalue problems. The analytical results are verified with numerical results obtained from finite element analyses that are conducted in the commercial software ABAQUS. The non-intrusive framework is completed by integrating the Monte Carlo simulation with the verified closed-form solutions. The convergence studies are performed to determine the effective pseudorandom draws of the simulation. The accuracy and efficiency of the framework are verified with statistical results that are obtained from the first and second-order perturbation techniques. Eleven cases of individual and compound uncertainties are investigated. Sensitivity analyses are conducted to figure out the five cases that have profound perturbative effects on the shell buckling loads. Complete probability distributions of the first three critical buckling loads are completely presented for each profound uncertainty case. The effects of the shell thickness, volume fraction index, and stochasticity degree on the shell buckling load under compound uncertainties are studied. There is a high probability that the shell has non-unique buckling modes in stochastic environments, which should be known for reliable analysis and design of engineering structures.

On the snap-buckling phenomenon in nanocomposite curved tubes

  • Dan Chen;Jun Shao;Zhengrong Xu;Hadi Babaei
    • Structural Engineering and Mechanics
    • /
    • 제89권1호
    • /
    • pp.13-22
    • /
    • 2024
  • The nonlinear snap-through buckling of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) curved tubes is analytically investigated in this research. It is assumed that the FG-CNTRC curved tube is supported on a three-parameter nonlinear elastic foundation and is subjected to the uniformly distributed pressure and thermal loads. Properties of the curved nanocomposite tube are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite tube are temperature-dependent. The governing equations of the curved tube are obtained using a higher-order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved tube. Equations of motion are solved using the two-step perturbation technique for nanocomposite curved tubes which are simply-supported and clamped. Closed-form expressions are provided to estimate the snap-buckling resistance of FG-CNTRC curved pipes rested on nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of the distribution pattern and volume fraction of CNTs, thermal field, foundation stiffnesses, and geometrical parameters on the instability of the curved nanocomposite tube.

Bending analysis of nano-Fe2O3 reinforced concrete slabs exposed to temperature fields and supported by viscoelastic foundation

  • Zouaoui R. Harrat;Mohammed Chatbi;Baghdad Krour;Sofiane Amziane;Mohamed Bachir Bouiadjra;Marijana Hadzima-Nyarko;Dorin Radu;Ercan Isik
    • Advances in concrete construction
    • /
    • 제17권2호
    • /
    • pp.111-126
    • /
    • 2024
  • During the clinkering stages of cement production, the chemical composition of fine raw materials such as limestone and clay, which include iron oxide (Fe2O3), silicon dioxide (SiO2) and aluminum oxide (Al2O3), significantly influences the quality of the final product. Specifically, the chemical interaction of Fe2O3 with CaO, SiO2 and Al2O3 during clinkerisation plays a key role in determining the chemical reactivity and overall quality of the final cement, shaping the properties of the concrete produced. As an extension, this study aims to investigate the physical effects of incorporating nanosized Fe2O3 particles as fillers in concrete matrices, and their impact on concrete structures, namely slabs. To accurately model the reinforced concrete (RC) slabs, a refined trigonometric shear deformation theory (RTSDT) is used. Additionally, the stochastic Eshelby's homogenization approach is employed to determine the thermoelastic properties of nano-Fe2O3 infused concrete slabs. To ensure comprehensive coverage in the study, the RC slabs undergo various mechanical loads and are exposed to temperature fields to assess their thermo-mechanical performance. Furthermore, the slabs are assumed to rest on a three-parameter viscoelastic foundation, comprising the Winkler elastic springs, Pasternak shear layer and a damping parameter. The equilibrium governing equations of the system are derived using the principle of virtual work and subsequently solved using Navier's technique. The findings indicate that while ferric oxide nanoparticles enhance the mechanical properties of concrete against mechanical loading, they have less favorable effects on its performance against thermal exposure. However, the viscoelastic foundation contributes to mitigating these effects, improving the concrete's overall performance in both scenarios. These results highlight the trade-offs between mechanical and thermal performance when using Fe2O3 nanoparticles in concrete and underscore the importance of optimizing nanoparticle content and loading conditions to improve the structural performance of concrete structures.