• 제목/요약/키워드: refined quasi-3D theory

검색결과 12건 처리시간 0.027초

Buckling analysis of FG plates via 2D and quasi-3D refined shear deformation theories

  • Lemya Hanifi Hachemi Amar;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Kouider Halim Benrahou;Hind Albalawi;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권6호
    • /
    • pp.765-780
    • /
    • 2023
  • In this work, a novel combined logarithmic, secant and tangential 2D and quasi-3D refined higher order shear deformation theory is proposed to examine the buckling analysis of simply supported uniform functionally graded plates under uniaxial and biaxial loading. The proposed formulations contain a reduced number of variables compared to others similar solutions. The combined function employed in this study ensures automatically the zero-transverse shear stresses at the free surfaces of the structure. Various models of the material distributions are considered (linear, quadratic, cubic inverse quadratic and power-law). The differentials stability equations are derived via virtual work principle with including the stretching effect. The Navier's approach is applied to solve the governing equations which satisfying the boundary conditions. Several comparative and parametric studies are performed to illustrates the validity and efficacity of the proposed model and the various factors influencing the critical buckling load of thick FG plate.

A refined quasi-3D theory for stability and dynamic investigation of cross-ply laminated composite plates on Winkler-Pasternak foundation

  • Nasrine Belbachir;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Mohamed A. Al-Osta;Mofareh Hassan Ghazwani;Ali Alnujaie;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제85권4호
    • /
    • pp.433-443
    • /
    • 2023
  • The current paper discusses the dynamic and stability responses of cross-ply composite laminated plates by employing a refined quasi-3D trigonometric shear deformation theory. The proposed theory takes into consideration shear deformation and thickness stretching by a trigonometric variation of in-plane and transverse displacements through the plate thickness and assures the vanished shear stresses conditions on the upper and lower surfaces of the plate. The strong point of the new formulation is that the displacements field contains only 4 unknowns, which is less than the other shear deformation theories. In addition, the present model considers the thickness extension effects (εz≠0). The presence of the Winkler-Pasternak elastic base is included in the mathematical formulation. The Hamilton's principle is utilized in order to derive the four differentials' equations of motion, which are solved via Navier's technique of simply supported structures. The accuracy of the present 3-D theory is demonstrated by comparing fundamental frequencies and critical buckling loads numerical results with those provided using other models available in the open literature.

A new higher-order shear and normal deformation theory for the buckling analysis of new type of FGM sandwich plates

  • Chikr, Sara Chelahi;Kaci, Abdelhakim;Yeghnem, Redha;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • 제72권5호
    • /
    • pp.653-673
    • /
    • 2019
  • This work investigates a novel quasi-3D hyperbolic shear deformation theory is presented to discuss the buckling of new type of sandwich plates. This theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of all displacements through the thickness. The enhancement of this formulation is due to the use of only five unknowns by including undetermined integral terms, contrary to other theories where we find six or more unknowns. It does not require shear correction factors and transverse shear stresses vary parabolically across the thickness. A new type of FGM sandwich plates, namely, both FGM face sheets and FGM hard core are considered. The governing equations and boundary conditions are derived using the principle of virtual displacements. Analytical solutions are obtained for a simply supported plate. The accuracy of the present theory is verified by comparing the obtained results with quasi-3D solutions and those predicted by higher-order shear deformation theories. The comparison studies show that the obtained results are not only more accurate than those obtained by higher-order shear deformation theories, but also comparable with those predicted by quasi-3D theories with a greater number of unknowns.

Analytical investigation of bending response of FGM plate using a new quasi 3D shear deformation theory: Effect of the micromechanical models

  • Bouiadjra, Rabbab Bachir;Mahmoudi, Abdelkader;Benyoucef, Samir;Tounsi, Abdelouahed;Bernard, Fabrice
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.317-328
    • /
    • 2018
  • In this paper, a new refined quasi-three-dimensional (3D) shear deformation theory for the bending analysis of functionally graded plate is presented. The number of unknown functions involved in this theory is only four against five or more in the case of the other shear and normal deformation theories. Due to its quasi-3D nature, the stretching effect is taken into account in the formulation of governing equations. In addition, the effect of different micromechanical models on the bending response of these plates is studied. Various micromechanical models are used to evaluate the mechanical characteristics of the FG plates whose properties vary continuously across the thickness according to a simple power law. The present theory accounts for both shear deformation and thickness stretching effects by a parabolic variation of displacements across the thickness, and the zero traction boundary conditions on the top and bottom surfaces of the plate without using shear correction factors. The problem is solved for a plate simply supported on its edges and the Navier solution is used. The results of the present method are compared with others from the literature where a good agreement has been found. A detailed parametric study is presented to show the effect of different micromechanical models on the flexural response of a simply supported FG plates.

Bending analysis of functionally graded plates using a new refined quasi-3D shear deformation theory and the concept of the neutral surface position

  • Hachemi, Houari;Bousahla, Abdelmoumen Anis;Kaci, Abdelhakim;Bourada, Fouad;Tounsi, Abdeldjebbar;Benrahou, Kouider Halim;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • 제39권1호
    • /
    • pp.51-64
    • /
    • 2021
  • This paper presents a high-order shear and normal deformation theory for the bending of FGM plates. The number of unknowns and governing equations of the present theory is reduced, and hence makes it simple to use. Unlike any other theory, the number of unknown functions involved in displacement field is only four, as against five or more in the case of other shear and normal deformation theories. Based on the novel shear and normal deformation theory, the position of neutral surface is determined and the governing equilibrium equations based on neutral surface are derived. There is no stretching-bending coupling effect in the neutral surface-based formulation, and consequently, the governing equations of functionally graded plates based on neutral surface have the simple forms as those of isotropic plates. Navier-type analytical solution is obtained for functionally graded plate subjected to transverse load for simply supported boundary conditions. The accuracy of the present theory is verified by comparing the obtained results with other quasi-3D higher-order theories reported in the literature. Other numerical examples are also presented to show the influences of the volume fraction distribution, geometrical parameters and power law index on the bending responses of the FGM plates are studied.

Dynamic analysis of nanosize FG rectangular plates based on simple nonlocal quasi 3D HSDT

  • Boutaleb, Sabrina;Benrahou, Kouider Halim;Bakora, Ahmed;Algarni, Ali;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Tounsi, Abdeldjebbar;Mahmoud, S.R.
    • Advances in nano research
    • /
    • 제7권3호
    • /
    • pp.191-208
    • /
    • 2019
  • In the present work the dynamic analysis of the functionally graded rectangular nanoplates is studied. The theory of nonlocal elasticity based on the quasi 3D high shear deformation theory (quasi 3D HSDT) has been employed to determine the natural frequencies of the nanosize FG plate. In HSDT a cubic function is employed in terms of thickness coordinate to introduce the influence of transverse shear deformation and stretching thickness. The theory of nonlocal elasticity is utilized to examine the impact of the small scale on the natural frequency of the FG rectangular nanoplate. The equations of motion are deduced by implementing Hamilton's principle. To demonstrate the accuracy of the proposed method, the calculated results in specific cases are compared and examined with available results in the literature and a good agreement is observed. Finally, the influence of the various parameters such as the nonlocal coefficient, the material indexes, the aspect ratio, and the thickness to length ratio on the dynamic properties of the FG nanoplates is illustrated and discussed in detail.

A refined HSDT for bending and dynamic analysis of FGM plates

  • Zaoui, Fatima Zohra;Tounsi, Abdelouahed;Ouinas, Djamel;Olay, Jaime A. Vina
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.105-119
    • /
    • 2020
  • In this work, a novel higher-order shear deformation theory (HSDT) for static and free vibration analysis of functionally graded (FG) plates is proposed. Unlike the conventional HSDTs, the proposed theory has a novel displacement field which includes undetermined integral terms and contains fewer unknowns. Equations of motion are obtained by using Hamilton's principle. Analytical solutions for the bending and dynamic investigation are determined for simply supported FG plates. The computed results are compared with 3D and quasi-3D solutions and those provided by other plate theories. Numerical results demonstrate that the proposed HSDT can achieve the same accuracy of the conventional HSDTs which have more number of variables.

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • 제27권4호
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

The role of micromechanical models in the mechanical response of elastic foundation FG sandwich thick beams

  • Yahiaoui, Mohammed;Tounsi, Abdelouahed;Fahsi, Bouazza;Bouiadjra, Rabbab Bachir;Benyoucef, Samir
    • Structural Engineering and Mechanics
    • /
    • 제68권1호
    • /
    • pp.53-66
    • /
    • 2018
  • This paper presents an analysis of the bending, buckling and free vibration of functionally graded sandwich beams resting on elastic foundation by using a refined quasi-3D theory in which both shear deformation and thickness stretching effects are included. The displacement field contains only three unknowns, which is less than the number of parameters of many other shear deformation theories. In order to homogenize the micromechanical properties of the FGM sandwich beam, the material properties are derived on the basis of several micromechanical models such as Tamura, Voigt, Reuss and many others. The principle of virtual works is used to obtain the equilibrium equations. The elastic foundation is modeled using the Pasternak mathematical model. The governing equations are obtained through the Hamilton's principle and then are solved via Navier solution for the simply supported beam. The accuracy of the proposed theory can be noticed by comparing it with other 3D solution available in the literature. A detailed parametric study is presented to show the influence of the micromechanical models on the general behavior of FG sandwich beams on elastic foundation.