• Title/Summary/Keyword: reference tidal levels

Search Result 6, Processing Time 0.019 seconds

Analysis on the Emersion and Submersion Patterns of the Coastal Zone in Korea (한국 연안의 노출 및 침수 양상 분석)

  • Ko, Dong Hui;Jeong, Shin Taek;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.28 no.5
    • /
    • pp.312-317
    • /
    • 2016
  • The submersion and emersion patterns are key factors that directly influence the habitat environment of the coastal plants and animals. In this study, the coasts are divided into five zones (zones 1, 2, 3, 4, and 5 - not flooded, flooded once, flooded and exposed to air twice, exposed to air once, continuously flooded in the day, respectively) based on the patterns using tidal elevation data at the major eight stations and the domestic and international reference tidal levels, i.e., AHHW, ALLW, HAT and LAT, are also estimated to analyse the characteristics of the five distinct zones. Based on the results, the frequency of the zone 3 are dominant and forms from 87.2% to 88.2% (nearly constant) irrelevant with the tidal ranges at all stations. The taking-up percentages of the zones 2 and 4 show nearly constant, below 4% and over 8%, respectively. In Pohang station classified as the mainly diurnal tide, the percentages are decreased to 1.4% in zone 2 and increased to 10.8% due to the effects of the annual and semi-annual tidal components.

Prediction of acoustic field induced by a tidal turbine under straight or oblique inflow via a BEM/FW-H approach

  • Seungnam Kim;Spyros A. Kinnas
    • Ocean Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.147-172
    • /
    • 2023
  • This study investigates the influence of loading and inflow conditions on tidal turbine performance from a hydrodynamic and hydroacoustic point of view. A boundary element method is utilized for the former to investigate turbine performance at various loading conditions under zero/non-zero yaw inflow. The boundary element method is selected as it has been selected, tested, and validated to be computationally efficient and accurate for marine hydrodynamic problems. Once the hydrodynamic solutions are obtained, such as the time-dependent surface pressures and periodic motion of the turbine blade, they are taken as the known noise sources for the subsequence hydroacoustic analysis based on the Ffowcs Williams-Hawkings formulation given in a form proposed by Farassat. This formulation is coupled with the boundary element method to fully consider the three-dimensional shape of the turbine and the speed of sound in the acoustic analysis. For validations, a model turbine is taken from a reference paper, and the comparison between numerical predictions and experimental data reveals satisfactory agreement in hydrodynamic performance. Importantly, this study shows that the noise patterns and sound pressure levels at both the near- and far-field are affected by different loading conditions and sensitive to the inclination imposed in the incoming flow.

Application of Remote Sensing and GIS technology for monitoring coastal changes in estuary area of the Red river system, Vietnam

  • Lan, Pham Thi;Son, Tong Si;Gunasekara, Kavinda;Nhan, Nguyen Thi;Hien, La Phu
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.6_2
    • /
    • pp.529-538
    • /
    • 2013
  • Coastline is the most dynamic part of seascape since its shape is affected by various factors. Coastal zone is an area with immense geological, geomorphological and ecological interest. Monitoring coastal change is very important for safe navigation, coastal resource management. This paper shows a result of monitoring coastal morphological changes using Remote Sensing and GIS. Study was carried out to obtain intensity of erosion, deposition and sand bar movement in the Red River Delta. Satellite images of ALOS/AVNIR-2 and Landsat were used for the monitoring of coastal morphological changes over the period of 1975 to 2009. Band rationing and threshold technique was used for the coastline extraction. Tidal levels at the time of image acquisition varied from -0.89m to 2.87m. Therefore, coastline from another image at a different tidal level in the same year was considered to get the corrected coastline by interpolation technique. A series of points were generated along the coastal line from 1975 image and were established as reference points to see the change in later periods. The changes were measured in Euclidean distances from these reference points. Positive values represented deposition to the sea and negative values are erosion. The result showed that the Red river delta area expanded to the sea 3500m in Red river mouth, and 2873m in Thai Binh river mouth from 1975 to 2009. The erosion process occurred continuously from 1975 up to now with the average magnitude 23.77m/year from 1975 to 1989 and 7.85m/year from 2001 to 2009 in Giao Thuy area. From 1975 to 2009, total 1095.2ha of settlement area was eroded by sea. On the other hand, land expanded to the sea in 4786.24ha of mangrove and 1673.98ha of aquaculture.

Converting Ieodo Ocean Research Station Wind Speed Observations to Reference Height Data for Real-Time Operational Use (이어도 해양과학기지 풍속 자료의 실시간 운용을 위한 기준 고도 변환 과정)

  • BYUN, DO-SEONG;KIM, HYOWON;LEE, JOOYOUNG;LEE, EUNIL;PARK, KYUNG-AE;WOO, HYE-JIN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.23 no.4
    • /
    • pp.153-178
    • /
    • 2018
  • Most operational uses of wind speed data require measurements at, or estimates generated for, the reference height of 10 m above mean sea level (AMSL). On the Ieodo Ocean Research Station (IORS), wind speed is measured by instruments installed on the lighthouse tower of the roof deck at 42.3 m AMSL. This preliminary study indicates how these data can best be converted into synthetic 10 m wind speed data for operational uses via the Korea Hydrographic and Oceanographic Agency (KHOA) website. We tested three well-known conventional empirical neutral wind profile formulas (a power law (PL); a drag coefficient based logarithmic law (DCLL); and a roughness height based logarithmic law (RHLL)), and compared their results to those generated using a well-known, highly tested and validated logarithmic model (LMS) with a stability function (${\psi}_{\nu}$), to assess the potential use of each method for accurately synthesizing reference level wind speeds. From these experiments, we conclude that the reliable LMS technique and the RHLL technique are both useful for generating reference wind speed data from IORS observations, since these methods produced very similar results: comparisons between the RHLL and the LMS results showed relatively small bias values ($-0.001m\;s^{-1}$) and Root Mean Square Deviations (RMSD, $0.122m\;s^{-1}$). We also compared the synthetic wind speed data generated using each of the four neutral wind profile formulas under examination with Advanced SCATterometer (ASCAT) data. Comparisons revealed that the 'LMS without ${\psi}_{\nu}^{\prime}$ produced the best results, with only $0.191m\;s^{-1}$ of bias and $1.111m\;s^{-1}$ of RMSD. As well as comparing these four different approaches, we also explored potential refinements that could be applied within or through each approach. Firstly, we tested the effect of tidal variations in sea level height on wind speed calculations, through comparison of results generated with and without the adjustment of sea level heights for tidal effects. Tidal adjustment of the sea levels used in reference wind speed calculations resulted in remarkably small bias (<$0.0001m\;s^{-1}$) and RMSD (<$0.012m\;s^{-1}$) values when compared to calculations performed without adjustment, indicating that this tidal effect can be ignored for the purposes of IORS reference wind speed estimates. We also estimated surface roughness heights ($z_0$) based on RHLL and LMS calculations in order to explore the best parameterization of this factor, with results leading to our recommendation of a new $z_0$ parameterization derived from observed wind speed data. Lastly, we suggest the necessity of including a suitable, experimentally derived, surface drag coefficient and $z_0$ formulas within conventional wind profile formulas for situations characterized by strong wind (${\geq}33m\;s^{-1}$) conditions, since without this inclusion the wind adjustment approaches used in this study are only optimal for wind speeds ${\leq}25m\;s^{-1}$.

Assessment of the Impacts of 'Sea Prince' Oil Spill on the Rocky Intertidal Macrobenthos Community (암반조간대 대형저서동물군집에 대한 씨프린스호 유류 유출사고 영향 평가)

  • Shin, Hyun-Chool;Lee, Jung-Ho;Lim, Kyeong-Hun;Yoon, Seong-Myeoung;Koh, Chul-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.3
    • /
    • pp.159-169
    • /
    • 2008
  • This study was aimed to classify the intertidal macrozoobenthic community status after 2 years of Sea Prince oil spill, and oil spill effects along oil spreading track from heavily impacted to unaffected reference site. Field sampling was initiated in late February and continued through November 1998 seasonally, after 2.5 years of oil spill. 7 rocky sampling sites were selected among coastal regions coated and/or affected by the Sea Prince spilled oil. Identified species was 158 species, 65 family, 24 order, 9 class, 5 phylum. Mollusca was the dominant faunal group comprising 100 species (63.3%), and followed by 38 species of Crustacea (24.1%), 12 species of Echinodermata (7.6%), 5 species of Porifera (3.2%), and 3 species of Cnidaria (1.9%). On Dugpo of Sori Island, the fewest species was collected from 28 species to 35 species seasonally among sampling stations. But far away Dugpo toward Gamak Bay, the number of species increased, collecting the maximum on Sohwoenggan Island. At the wreck site of Sori Island, especially the species number of attached animals such as poriferans and anthozoans was very low compared to another site. The density and biomass on the higher tidal zone increased toward the low affected sites, but biomass on middle tidal zone decreased. The invertebrate biomass of study area was dependent on the sessile animals. The major dominant species were small-sized barnacles, Chthmallus challengeri, periwinkles, Littorina brevicula, mussels, Septifer virgatus, and so on. The biomass of C. challengeri and L. brevicula on the higher tidal zone was highest in the wreck site of Sori Island and decreased further and further. However, mussels on the middle tidal zone showed the inverse trends because of the larger individual size of mussel inhabited in Sori Island than those of another sites. As a result of community analysis, the effect of oil spill was not found distinctly. Several ecological indices and cluster analysis did not show the meaningful variation with oil track despite of the conspicuous differences among tidal heights. These indicate that the macrozoobenthic community level of oil spreaded zone recovered in some degree after the Sea Prince oil spill accident, but population or individual levels of dominant sessile animals took more recovery times.

A Study on Safe Vessel Traffic Speeds Based On a Ship Collision Energy Analysis at Incheon Bridge (인천대교 선박 충돌에너지 분석을 통한 선박의 통항안전 속력에 관한 연구)

  • Lee, Chang-Hyun;Lee, Hong-Hoon;Kim, Deun-Bong;Kim, Chol-Seong;Park, Seong-Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.593-599
    • /
    • 2016
  • Incheon Bridge is 13.38 km long with an 800 m span, connecting Incheon International Airport and Songdo International City, Per hour 73.8 vessels navigate this space. The purpose of this study was to suggest a safe passing speed based on the displacement of a vessel based on the safety criteria of Incheon Bridge's anti-collision fence, which was designed during its initial construction. As AASHTO LRFD suggested, vessel collision energy, vessel collision velocity, and the hydrodynamic mass coefficient were considered to derive a safe vessel traffic speed. Incheon Bridge's anti-collision fence was designed so that 100,000 DWT vessels can navigate at a speed of 10 knot. This research suggests a safe speed for vessel traffic through a comparative analysis of an experimental ship's (300,000 DWT) speed and cargo conditions, regulation speed has been calculated according to the collision energy under each set of conditions. Additionally, safe traffic vessel's safe speed was analyzed with reference to tidal levels. Results from the experimental ship showed that a vessel of maximum 150,000 DWT is able to pass Incheon Bridge at a maximum of 7 knots with an above average water level, and is able to pass the bridge with a maximum of 8 knots under ballast conditions.