• Title/Summary/Keyword: reference thermogram

Search Result 2, Processing Time 0.019 seconds

Study on Inhomogeneity in Compositions of Asphalt Pavement Wear Particles Using Thermogravimetric Analysis

  • Uiyeong Jung;Sung-Seen Choi
    • Elastomers and Composites
    • /
    • v.58 no.2
    • /
    • pp.81-86
    • /
    • 2023
  • Asphalt pavements are generally composed of fine and coarse aggregates, bitumen, and modifier. Asphalt pavement wear particles (APWPs) are produced by friction between the road surface and the tire tread, and they flow into the environment such as rivers and oceans. Model APWPs were prepared and a single APWP of 212-500 (S-APWP) and 500-1000 ㎛ (L-APWP) was analyzed using thermogravimetric analysis (TGA) to investigate inhomogeneity in the compositions of the APWPs. The reference TGA thermogram was built using thermograms of the raw materials and formulation of the model asphalt pavement. The compositions of the APWPs were different from each other. Ash contents of the APWPs were lower than expected. Inhomogeneity in the total contents of bitumen and modifier was more severe than that in the other components. The inhomogeneity of the S-APWPs was more severe than that of the L-APWPs.

Synthesis, chemically and electrochemically polymerization of N-substituted pyrrole containing azo chromophore and its copolymerization with pyrrole

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.1 no.4
    • /
    • pp.299-310
    • /
    • 2012
  • This article describes the synthesis of a novel N-substituted pyrrole monomer containing an azobenzene group. The 2-[N-ethyl-N-[4-[(4-nitrophenyl) azo]-phenyl] amino] ethyl-3-chloropropionate (RedII) compound was synthesized via reaction of 4-nitro-4'-[N-ethyl-N-(2-hydroxyethyl)-amino] azobenzene (RedI) and 3-chloropropionic acid. RedII was reacted with the potassium salt of pyrrole then 2-[N-ethyl-N-[4-[(nitro phenyl) azo] phenyl] amino] ethyl-N-pyrrolyl propionate (Py-RedII) was prepared. Chemical polymerization of Py-RedII and copolymerization of Py-RedII with pyrrole carried out using $FeCl_3$. Poly (2-[N-ethyl-N-[4-[(nitro phenyl) azo] phenyl] amino] ethyl-N-pyrrolyl propionate) (PPy-RedII) was characterized by UV, IR, $^1HNMR$, $^{13}CNMR$ spectroscopies. Electropolymerization of Py-RedII and electroco-polymerization of Py-RedII and pyrrole were studied using conventional three electrodes system, Ag/AgCl reference electrode, platinum counter electrode and GC disk working electrode. Scanning electron microscopy (SEM), thermogravimetry analysis (TGA) and differential scanning calorimetry (DSC) were used for thermal and rheological studies. The TGA curve of PPy-RedII demonstrated a high thermal stability up to 200°C and its DSC thermogram showed two endothermic peaks at 88 and $122^{\circ}C$. The glass transition temperature of the polymer was found to be above the room temperature. Electrical conductivities of PPy-RedII and it's copolymer with pyrrole (PPy-RedII-co-Py) were studied by the four-probe method and produced conductivities of $7.5{\times}10^{-4}$ and $6.5{\times}10^{-3}Scm^{-1}$, respectively.