• Title/Summary/Keyword: reference radiation fields

Search Result 44, Processing Time 0.022 seconds

Determination of Phantom Scatter Factors for Small Photon Fields (소조사면 광자선의 팬톰산란인수 결정)

  • Oh, Young-Kee;Choi, Tae-Jin;Kim, Jin-Hee;Kim, Ok-Bae
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.106-111
    • /
    • 2009
  • Total scatter factor ($S_{cp}$), head scatter factor ($S_c$) and phantom scatter factor ($S_p$) are very important for accurate radiation therapy at stereotactic radiosurgery (SRS) with irregular field shape using micro-MLC and intensity modulated radiation therapy (IMRT) including many small field sizes. In this study we measured and compared $S_{cp}$ with reference ion chamber, pinpoint chamber and diode detector and adapted the resuls form diode detector. Head scatter factors for small field sizes were also measured with diode detector covered 1.5 cm-thick solid water build-up cap. Some errors like as electron contamination of 1~3% were included in the values of Sc but trend of total results of $S_c$ was coincided with basic theory. Phantom scatter factors for small field sizes were calculated form $S_{cp}$ and $S_c$. The results of $S_p$ were compared and were well-agreed with those of other authors.

  • PDF

Development of a Wide Dose-Rate Range Electron Beam Irradiation System for Pre-Clinical Studies and Multi-Purpose Applications Using a Research Linear Accelerator

  • Jang, Kyoung Won;Lee, Manwoo;Lim, Heuijin;Kang, Sang Koo;Lee, Sang Jin;Kim, Jung Kee;Moon, Young Min;Kim, Jin Young;Jeong, Dong Hyeok
    • Progress in Medical Physics
    • /
    • v.31 no.2
    • /
    • pp.9-19
    • /
    • 2020
  • Purpose: This study aims to develop a multi-purpose electron beam irradiation device for preclinical research and material testing using the research electron linear accelerator installed at the Dongnam Institute of Radiological and Medical Sciences. Methods: The fabricated irradiation device comprises a dual scattering foil and collimator. The correct scattering foil thickness, in terms of the energy loss and beam profile uniformity, was determined using Monte Carlo calculations. The ion-chamber and radiochromic films were used to determine the reference dose-rate (Gy/s) and beam profiles as functions of the source to surface distance (SSD) and pulse frequency. Results: The dose-rates for the electron beams were evaluated for the range from 59.16 Gy/s to 5.22 cGy/s at SSDs of 40-120 cm, by controlling the pulse frequency. Furthermore, uniform dose distributions in the electron fields were achieved up to approximately 10 cm in diameter. An empirical formula for the systematic dose-rate calculation for the irradiation system was established using the measured data. Conclusions: A wide dose-rate range electron beam irradiation device was successfully developed in this study. The pre-clinical studies relating to FLASH radiotherapy to the conventional level were made available. Additionally, material studies were made available using a quantified irradiation system. Future studies are required to improve the energy, dose-rate, and field uniformity of the irradiation system.

Calculations of ISO Narrow and ANSI X-Ray Spectra, Their Average Energies and Conversion Coefficients (ISO Narrow Series및 ANSI의 X선 스펙트럼, 평균에너지 및 선량환산인자의 이론적 계산)

  • Kim, Jang-Lyul;Kim, Bong-Whan;Chang, Si-Young;Lee, Jai-Ki
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.2
    • /
    • pp.129-136
    • /
    • 1995
  • In spite of the prescriptions on the reference X-ray fields given by the International Organization of Strandard(ISO) and American National Standard Institute(ANSI), the measurement of X-ray spectrum is not only time consuming but very difficult, paticularly when significant corrections have to be applied to the measured pulse-height distributions of the observed spectra. This paper describes the calculation method of ISO Narrow Series and ANSI X-ray filtered radiations by theoretical model which is modified framer's theory by target attenuation and backscatter correction. The X-ray spectra, average energies and conversion coefficients are calculated and compared with those obtained using the spectra prescribed by ISO and AMSI to assure good agreement.

  • PDF

Digital n-γ Pulse Shape Discrimination in Organic Scintillators with a High-Speed Digitizer

  • Kim, Chanho;Yeom, Jung-Yeol;Kim, Geehyun
    • Journal of Radiation Protection and Research
    • /
    • v.44 no.2
    • /
    • pp.53-63
    • /
    • 2019
  • Background: As neutron fields are always accompanied by gamma rays, it is essential to distinguish neutrons from gamma rays in the detection of neutrons. Neutrons and gamma rays can be separated by pulse shape discrimination (PSD) methods. Recently, we performed characterization of a stilbene scintillator detector and an EJ-301 liquid scintillator detector with a high-speed digitizer DT5730 and investigated optimized PSD variables for both detectors. This study is for providing a basis for developing fast neutron/gamma-ray dual-particle imager. Materials and Methods: We conducted PSD experiments using stilbene scintillator and EJ-301 liquid scintillator and evaluated neutron and gamma ray discriminability of each PSD method with a $^{137}Cs$ gamma source and a $^{252}Cf$ neutron source. We implemented digital signal processing techniques to apply two PSD methods - the charge comparison (CC) method and the constant time discrimination (CTD) method - to distinguish neutrons from gamma rays. We tried to find optimized PSD variables giving the best discriminability in a given experimental condition. Results and Discussion: For the stilbene scintillator detector, the charge comparison method and the constant time discrimination method both delivered the PSD FOM values of 1.7. For the EJ-301 liquid scintillator detector, both PSD methods delivered the PSD FOM values of 1.79. With the same PSD variables, PSD performance was excellent in $300{\pm}100keVee$, $500{\pm}100keVee$, and $700{\pm}100keVee$ energy regions. This result shows that we can achieve an effective discrimination of neutrons from gamma rays using these scintillator detector systems. Conclusion: We applied both PSD methods to a stilbene and a liquid scintillator and optimized the PSD performance represented by FOM values. We observed a good separation performance of both scintillators combined with a high-speed digitizer and digital PSD. These results will provide reference values for the dual-particle imager we are developing, which can image both fast neutrons and gamma rays simultaneously.

Evaluating efficiency of application the skin flash for left breast IMRT. (왼쪽 유방암 세기변조방사선 치료시 Skin Flash 적용에 대한 유용성 평가)

  • Lim, Kyoung Dal;Seo, Seok Jin;Lee, Je Hee
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.30 no.1_2
    • /
    • pp.49-63
    • /
    • 2018
  • Purpose : The purpose of this study is investigating the changes of treatment plan and comparing skin dose with or without the skin flash. To investigate optimal applications of the skin flash, the changes of skin dose of each plans by various thicknesses of skin flash were measured and analyzed also. Methods and Material : Anthropomorphic phantom was scanned by CT for this study. The 2 fields hybrid IMRT and the 6 fields static IMRT were generated from the Eclipse (ver. 13.7.16, Varian, USA) RTP system. Additional plans were generated from each IMRT plans by changing skin flash thickness to 0.5 cm, 1.0 cm, 1.5 cm, 2.0 cm and 2.5 cm. MU and maximum doses were measured also. The treatment equipment was 6MV of VitalBeam (Varian Medical System, USA). Measuring device was a metal oxide semiconductor field-effect transistor(MOSFET). Measuring points of skin doses are upper (1), middle (2) and lower (3) positions from center of the left breast of the phantom. Other points of skin doses, artificially moved to medial and lateral sides by 0.5 cm, were also measured. Results : The reference value of 2F-hIMRT was 206.7 cGy at 1, 186.7 cGy at 2, and 222 cGy at 3, and reference values of 6F-sIMRT were measured at 192 cGy at 1, 213 cGy at 2, and 215 cGy at 3. In comparison with these reference values, the first measurement point in 2F-hIMRT was 261.3 cGy with a skin flash 2.0 cm and 2.5 cm, and the highest dose difference was 26.1 %diff. and 5.6 %diff, respectively. The third measurement point was 245.3 cGy and 10.5 %diff at the skin flash 2.5 cm. In the 6F-sIMRT, the highest dose difference was observed at 216.3 cGy and 12.7 %diff. when applying the skin flash 2.0 cm for the first measurement point and the dose difference was the largest at the application point of 2.0 cm, not the skin flash 2.5 cm for each measurement point. In cases of medial 0.5 cm shift points of 2F-hIMRT and 6F-sIMRT without skin flash, the measured value was -75.2 %diff. and -70.1 %diff. at 2F, At -14.8, -12.5, and -21.0 %diff. at the 1st, 2nd and 3rd measurement points, respectively. Generally, both treatment plans showed an increase in total MU, maximum dose and %diff as skin flash thickness increased, except for some results. The difference of skin dose using 0.5 cm thickness of skin flash was lowest lesser than 20 % in every conditions. Conclusion : Minimizing the thickness of skin flash by 0.5 cm is considered most ideal because it makes it possible to keep down MUs and lowering maximum doses. In addition, It was found that MUs, maximum doses and differences of skin doses did not increase infinitely as skin flash thickness increase by. If the error margin caused by PTV or other factors is lesser than 1.0 cm, It is considered that there will be many advantages in with the skin flash technique comparing without it.

  • PDF

Research on the Decolorization of Epoxy Polymer by Accelerated Solar Radiation Test (태양광 복사 가속화 시험을 통한 에폭시 폴리머의 색 변화 특성 연구)

  • Lee, Sang-Bong;Lee, Dong-Geon;Kim, Myung-Jun;Lee, Soo-Yong;Park, Jung-Sun;Kang, Tae-Yeop;Baek, Sang-Hwa
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.949-956
    • /
    • 2016
  • There are a number of effects by solar radiation in many aerospace industrial fields, such as degradation of mechanical properties, sealing effect of sealants or decolorization. Because it takes long time to investigate these effects by using the light of natural state, new methods are developed for accelerating this phenomenon. In this paper, we developed an apparatus to simulate accelerated solar radiation phenomenon selecting irradiation intensity $1,120W/m^2$ as the designed environment. Epoxy polymer as the composite material was chosen and processed by ASTM-D638, a reference for tensile test of polymer and plastic. Total color shift was selected as the test category to evaluate acceleration of the test. We obtained acceleration factors and numerical model from test data and concluded it can shorten test periods by accelerated irradiation intensity of $1,120W/m^2$.

Development of 3-D Stereotactic Localization System and Radiation Measurement for Stereotactic Radiosurgery (방사선수술을 위한 3차원 정위 시스템 및 방사선량 측정 시스템 개발)

  • Suh, Tae-Suk;Suh, Doug-Young;Park, Sung-Hun;Jang, Hong-Seok;Choe, Bo-Young;Yoon, Sei-Chul;Shinn, Kyung-Sub;Bahk, Yong-Whee;Kim, Il-Hwan;Kang, Wee-Sang;Ha, Sung-Whan;Park, Charn-Il
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.25-36
    • /
    • 1995
  • The purpose of this research is to develop stereotactic localization and radiation measurement system for the efficient and precise radiosurgery. The algorithm to obtain a 3-D stereotactic coordinates of the target has been developed using a Fisher CT or angio localization. The procedure of stereotactic localization was programmed with PC computer, and consists of three steps: (1) transferring patient images into PC; (2) marking the position of target and reference points of the localizer from the patient image; (3) computing the stereotactic 3-D coordinates of target associated with position information of localizer. Coordinate transformation was quickly done on a real time base. The difference of coordinates computed from between Angio and CT localization method was within 2 mm, which could be generally accepted for the reliability of the localization system developed. We measured dose distribution in small fields of NEC 6 MVX linear accelerator using various detector; ion chamber, film, diode. Specific quantities measured include output factor, percent depth dose (PDD), tissue maximum ratio (TMR), off-axis ratio (OAR). There was small variation of measured data according to the different kinds of detectors used. The overall trends of measured beam data were similar enough to rely on our measurement. The measurement was performed with the use of hand-made spherical water phantom and film for standard arc set-up. We obtained the dose distribution as we expected. In conclusion, PC-based 3-D stereotactic localization system was developed to determine the stereotactic coordinate of the target. A convenient technique for the small field measurement was demonstrated. Those methods will be much helpful for the stereotactic radiosurgery.

  • PDF

Analysis of the Inter- and Intra-treatment Isocenter Deviations in Pelvic Radiotherapy With Small Bowel Displacement System (Small Bowel Displacement System을 이용한 골반부 방사선조사에서 치료간 및 치료중 중심점 위치변동에 관한 분석)

  • Kim Moon Kyung;Kim Dae Yong;Ahn Yong Chan;Huh Seung Jae;Lim Do Hun;Shin Kyung Hwan;Lee Kyu Chan
    • Radiation Oncology Journal
    • /
    • v.18 no.2
    • /
    • pp.114-119
    • /
    • 2000
  • Purpose : To evaluate the e지ent and frequency of the inter- and intra-treatment isocenter deviations of the whole pelvis radiation field in using small bowel displacement system (SBDS). Methods and Materials : Using electronic portal imaging device (EPID), 302 postero-anterior 232 lateral portal images were prospectively collected from 11 patients who received pelvic radiation therapy (7 with cervix cancer and 4 with rectal cancer). All patients were treated in prone position with SBDS under the lower abdomen. Five metallic fiducial markers were placed on the image detection unit for the recognition of the isocenter and magnification. After aligning the bony landmarks of the EPID images on those of the reference image, the deviations of the isocenter were measured in right-left (RL), cranio-caudal (CC), and PA directions. Results : The mean inter-treatment deviation of the isocenter in each RL, CC, and PA direction was 1.2 mm ($\pm$ 1.6 mm), 1.0 mm ($\pm$3.0 mm), and 0.9 mm ($\pm$4.4 mm), respectively. Inter-treatment isocenter deviations over 5 mm and 10 mm in RL, CC, and PA direction were 2, 12, 24$\%$, and 0, 0, 5$\%$, respectively. Maximal deviation was detected in PA direction, and was 11.5 mm. The mean intratreatment deviation of the isocenter in RL, CC, and PA direction was 0 mm ($\pm$0.9 mm), 0.1 mm ($\pm$ 1.9mm), and 0 mm ($\pm$1.6 mm), respectively. All intra-treatment isocenter deviations over 5 mm in each direction were 0, 1, 1$\pm$, respectively. Conclusions : As the greatest and the most frequent inter-treatment deviation of the isocenter was along the PA direction, it is recommended to put more generous safety margin toward the PA direction on the lateral fields if clinically acceptable in pelvic radiotherapy with SBDD.

  • PDF

Dose distribution at junctional area abutting X-ray and electron fields (X-선과 전자선의 인접조사에서 접합 조사면에서의 선량분포)

  • Yang, Kwang-Mo
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.16 no.1
    • /
    • pp.91-99
    • /
    • 2004
  • Purpose : For the head and neck radiotherapy, abutting photon field with electron field is frequently used for the irradiation of posterior neck when tolerable dose on spinal cord has been reached. Materials and methods : Using 6 MV X-ray and 9 MeV electron beams of Clinac1800(Varian, USA) linear accelerator, we performed film dosimetry by the X-OMAT V film of Kodak in solid water phantom according to depths(0 cm, 1.5 cm, 3 cm, 5 cm). 6 MV X-ray and 9 MeV electron(1Gy) were exposes to 8cm depth and surface(SSD 100cm) of phantom. The dose distribution to the junction line between photon($10cm{\times}10cm$ field with block) and electron($15cm{\times}15cm$ field with block) fields was also measured according to depths(0 cm, 0.5 1.5 cm, 3 cm, 5 cm). Results : At the junction line between photon and electron fields, the hot spot was developed on the side of the photon field and a cold spot was developed on that of the electron field. The hot spot in the photon side was developed at depth 1.5 cm with 7 mm width. The maximum dose of hot spot was increased to $6\%$ of reference doses in the photon field. The cold spot in the electron side was developed at all measured depths(0.5 cm-3 cm) with 1-12.5 mm widths. The decreased dose in the cold spot was $4.5-30\%$ of reference dose in the electron field. Conclusion : When we make use of abutting photon field with electron field for the treatment of head and neck cancer we should consider the hot and cold dose area in the junction of photon and electron field according to location of tumor.

  • PDF

A Study on the Dose Assessment Methodology Using the Probabilistic Characteristics of TL Element Response (확률분포 특성을 이용한 열형광선량계의 선량평가방법에 관한 연구)

  • Cho, Dae-Hyung;Oh, Jang-Jin;Han, Seung-Jae;Na, Seong-Ho;Hwang, Won-Guk;Lee, Won-Keun
    • Journal of Radiation Protection and Research
    • /
    • v.23 no.3
    • /
    • pp.123-138
    • /
    • 1998
  • Characteristics of element responses of Panasonic UD802 personnel dosimeters in the X, ${\beta}$, ${\gamma}$, ${\gamma}/X$, ${\gamma}/{\beta}$ and ${\gamma}$/neutron mixed fields were assessed. A dose-response algorithm has been developed to decide the high probability of a radiation type and energy by using the distribution in all six ratios of the multi-element TLD. To calculate the 4-element response factors and ratios between the elements of the Panasonic TLDs in the X, $\beta$, and $\gamma$ radiation fields, Panasonic’s UD802 TLDs were irradiated with KINS’s reference irradiation facility. In the photon radiation field, this study confirms that element-3 (E3) and element-4 (E4) of the Panasonic TLDs show energy dependent both in low- and intermediate-energy range, while element-1 (E1) and element-2 (E2) show little energy dependency in the entire whole range. The algorithm, which was developed in this study, was applied to the Panasonic personnel dosimetry system with UD716AGL reader and UD802 TLDs. Performance tests of the algorithm developed was conducted according to the standards and criteria recommended in the ANSI N13.11. The sum of biases and standard deviations was less than 0.232. The values of biases and standard deviations are distributed within a triangle of a lateral value of 0.3 in the ordinate and abscissa, With the above algorithm, Panasonic TLDs satisfactorily perform optimum dose assessment even under an abnormal response of the TLD elements to the energy imparted. This algorithm can be applied to a more rigorous dose assessment by distinguishing an unexpected dose from the planned dose for the most practical purposes, and is useful in conducting an effective personnel dose control program.

  • PDF