• Title/Summary/Keyword: reduction-scale experiment

Search Result 161, Processing Time 0.025 seconds

Experimental Study on Establishing Measurement Management Criteria for Soil Slope Failure by Using Reduction-Scale and Full-Scale Slope Experiments: Based on Matric Suction (소형 및 실규모 급경사지 실험을 통한 계측관리기준 개발을 위한 실험적 연구: 모관흡수력을 기준으로)

  • Hyo-Sung Song;Young-Hak Lee;Seung-Jae Lee;Jae-Jung Kim
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.555-571
    • /
    • 2023
  • Due to South Korea's concentrated summer rainfall, constituting 70% of the annual total, landslides frequently occur during the rainy season, necessitating accurate prediction methods to mitigate associated damage. In this study, a reduced-scale and full-scale slope was configured using weathered granite soil to find the possibility of establishing measurement management criterias through landslide reproduction. The experiment focused on matric suction, analyzing changes in ground properties and failure patterns caused by rainfall infiltration. Subsequently, an unsaturated infinite slope stability analysis was conducted. By calculating the failure time when the safety factor falls below 1 for each experiment, landslide prediction was demonstrated to be possible, approximately 17 minutes prior for the reduction-scale experiment and 6.5 hours for the full-scale experiment. These findings provide useful data for establishing Korean soil slope measurement management criteria that consider the characteristics of weathered granite soil.

Verification on Debris Reduction Ability of the Sweeper by Real Scale Experiment (실규모 실험검증을 통한 스위퍼의 유송잡물 저감능력 검토)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.9
    • /
    • pp.34-44
    • /
    • 2016
  • This study is an experimental study about a facility for preventing the accumulation of floating debris at a bridge by flooding at a small river. Generally, structures installed at a small river are damaged frequently by floating debris during typhoons or localized rainfall events. On the other hand, there is no method available for preventing such damage. The facilities used in other countries to prevent such damage by the accumulation of floating debris include debris fins, deflectors, and sweeper. Among these facilities, the present study was conducted with a sweeper to investigate the damage-reducing capability through a real-scale accumulation experiment. A sweeper was installed in front of a bridge to bypass floating debris by self-rotation so that the floating debris may not be accumulate at the bridge. A small bridge model was prepared in a real-scale for the real-scale experiment. The accumulation reducing capability was compared through an accumulation experiment before and after the sweeper installation depending on the length of the debris and flow conditions. The result showed that the accumulation rate increased with increasing length of the debris or decreasing flow rate. The installation of a sweeper decreased the debris accumulation rate by a minimum of 55% to a maximum of 88% compared to the case without an installed sweeper. The result of the present study showed that the installation of a sweeper at a small river having a high potential of generating floating debris may help secure the stability of a bridge in the case of floating debris accumulation.

Analysis on Effect of Energy Mitigation by Arrangement of Cylindrical Countermeasures through 3D Debris Flow Numerical Analysis (3차원 토석류 수치해석을 통한 원통형 대책구조물의 배치조건에 따른 에너지 저감효과 분석)

  • Kim, Beom Jun;Yune, Chan-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.621-630
    • /
    • 2023
  • In this study, to investigate an energy reduction effect by field application of cylindrical baffle arrays, the 3D Debris flow numerical analysis was conducted with various baffle configurations for the simulation of a real-scale valley, where the cylindrical baffle arrays were installed. For this, the valley of the watershed was modeled using terrestrial LiDAR data from the real-scale experiment site. Numerical analysis simulated the flow behavior of debris flow and the structures using Smooth Particle Hydrodynamics (SPH) technique of ABAQUS (Ver. 2021). The numerical analysis results that the case without cylindrical baffle arrays had a similar velocity change to that of the real-scale experiment. Also, the installation of baffles significantly reduced the frontal velocity of debris flow. Furthermore, increasing the baffle height increased the downstream energy reduction because of the higher flow impedance of taller baffles.

Effect of Dissolved Oxygen (DO) on Internal Corrosion of Water Pipes

  • Jung, Hae-Ryong;Kim, Un-Ji;Seo, Gyu-Tae;Lee, Hyun-Dong;Lee, Chun-Sik
    • Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.195-199
    • /
    • 2009
  • A series of laboratory-scale corrosion experiments was carried out to observe the effect of dissolved oxygen (DO) in the presence of other water quality parameters, such as hardness, Cl-, and pH using various pipe materials. In addition, a simulated loop system was installed at a water treatment plant for pilot-scale experiment. Laboratory-scale experiment showed that corrosion rates for galvanized steel pipe (GSP), carbon steel pipe (CSP), and ductile cast iron pipe (DCIP) were decreased to 72%, 75%, and 91% by reducing DO concentration from 9${\pm}$0.5 mg/L to 2${\pm}$0.5 mg/L. From the pilot scale experiment, it was further identified that the average ionization rate of zinc in GSP decreased from 0.00533 to 0.00078 mg/$cm^2$/d by controlling the concentration of DO. The reduction of average ionization rate for copper pipe (CP) and stainless steel pipe (SSP) were 71.4% for Cu and 63.5% for Fe, respectively. From this study, it was concluded that DO could be used as a major parameter in controlling the corrosion of water pipes.

Shaking table experiment on a steel storage tank with multiple friction pendulum bearings

  • Zhang, Ruifu;Weng, Dagen;Ge, Qingzi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.5
    • /
    • pp.875-887
    • /
    • 2014
  • The aim of the shaking table experiment is to verify the isolation effect of a storage liquid tank with multiple friction pendulum bearings. A 1:20 scale model of a real storage liquid tank that is widely used in the petroleum industry was examined by the shaking table test to compare its anchored base and isolated base. The seismic response of the tank was assessed by employing the time history input. The base acceleration, wave height and tank wall stress were used to evaluate the isolation effect. Finally, the influences of the bearing performance that characterizes the isolated tank, such as the friction force and residual displacement, were discussed.

A Study of Prevention of Heat Pipe Scale with Copper Alloy Metal (Copper Alloy Metal Fiber를 이용한 Heat pipe 표면의 스케일 제거에 관한 연구)

  • Song, Ju-Yeong;Lee, Sang-Ho;Kim, Eun-Hee;Kim, Jong-Hwa
    • Journal of the Korean Applied Science and Technology
    • /
    • v.26 no.4
    • /
    • pp.434-439
    • /
    • 2009
  • This paper is a new method for prevent. The particulate scale. stero-microscope were used for the scale removal experiment to improve mineralogical characteristics and the reduction of scales in heat pipe. Generally, the scale in the heat pipe consists of calcium carbonate minerals, such as calcite and aragonite which are precipitated by the reaction of Ca and $CO_2$ in the water. Copper alloy metal could eliminate the scale and prevent the production of scale in the heat pipe.

The Psychological Effect of Visual and Auditory Stimuli on the Road Traffic Noise (시청각 정보에 의한 도로교통소음의 심리적 저감효과)

  • Jang, Gil-Soo;Baek, Gun-Jong;Song, Min-Jeong;Shin, Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1177-1182
    • /
    • 2007
  • This study aims at identifying the effect of preferred visual and auditory stimuli on the road traffic noise perception through the series of psychoacoustic experiments. The first experiment was designed to find the addition effect of a sound reproducing system in a square where lay adjacent to roads with road traffic noise, provide appropriate music corresponding to the varying conditions of weather in the given space. In result, it was found that the rating around the square improved toward more positive adjectives. The second experiment was designed to assess the visual effect of twelve roadsides with different landscapes on the road traffic noise perception. As a result, approx. 3 to 5 dB(A) of psychological reduction was seen in places where natural landscape was preferred, compared to the others, although the noise levels were similar. The third experiment was designed to evaluate the effect of visual screen from adjacent roads on road traffic noise perception by means of ME method in a laboratory. In result, the effect of psychological reduction was observed at 65dB(A) or lower. Especially, complete screening from adjacent roads led to 5 to 10% of loudness reduction effect, compared to non-screening cases. Finally, the fourth experiment was designed to evaluate the effect of visual and auditory information with ME method and 7-point SD rating scale in a laboratory. In result, up to 10% of loudness reduction and about 2dB(A) of noise perceptional reduction were seen at 65dB(A) or lower.

  • PDF

Improvement of Cooling Water Quality by Corrosion and Scale Inhibitor (부식 및 스케일 억제제에 의한 냉각수 수질향상)

  • Jo, Kwan-Hyung;Woo, Dal-Sik;Hwang, Byung-Gi
    • Journal of Environmental Science International
    • /
    • v.18 no.2
    • /
    • pp.187-195
    • /
    • 2009
  • This study was investigated to control the corrosion and scale at the cooling water system in steel works. Laboratory and field tests were performed for the indirect cooling water system of plate mill. Throughout the experiment, various factors such as leakage of pipes, heating rate and capacity, and the reaction between existing and substitute inhibitors were carefully monitored. The results showed that the harmful effect of high temperature could be minimized, and satisfactory corrosion/scale controls were effectively achieved using inhibitor, even at the increased temperature of $80^{\circ}C$. The batch and field tests in the gas scrubbing cooling water system of blast furnace and cooling water system of corex plant indicated that the new inhibitor was more effective for the prevention of corrosion and scale than the existing one.

Noise reduction of noise barrier with noise reducer for high speed train by using scale down model test (축척모형 실험에 의한 고속전철 방음벽용 소음저감 장치)

  • 정성수;전병수;나희승;김준엽;양신추
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.647-652
    • /
    • 2001
  • A noise reduction of noise barrier for high speed train was measured by using scale down model test. A selected types of noise barriers were simple vertical barrier, interference type barrier with plate, interference type barrier with cylindrical pipes. On experiment, in order to make similar present test lane condition, reduced train model and multiple noise sources were considered. As a result. interference type noise barrier with cylindrical pipes is most effective than other barriers. A present height of noise barrier which is established in a test lane is not high enough for reducing patograph noise.

  • PDF