• Title/Summary/Keyword: reduction iron

Search Result 606, Processing Time 0.028 seconds

Synthesis of Nano Metal Powder by Electrochemical Reduction of Iron Oxides

  • Seong, Ki-Hun;Lee, Jai-Sung
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.482-483
    • /
    • 2006
  • Synthesis of iron nanopowder by room-temperature electrochemical reduction process of ${\alpha}-Fe_2O_3$ nanopowder was investigated in terms of phase evolution and microstructure. As process variables, reduction time and applied voltage were changed in the range of $1{\sim}20$ h and $30{\sim}40$ V, respectively. From XRD analyses, it was found that volume of Fe phase increased with increasing reduction time and applied voltage, respectively. The crystallite size of Fe phase in all powder samples was less than 30 nm, implying that particle growth was inhibited by the reaction at room temperature. Based on the distinct equilibrium shape of crystalline particle, phase composition of nanoparticles was identified by TEM observation.

  • PDF

Stator Slot Shape Optimization of Induction Motors for Iron Loss Reduction (철손 저감을 위한 유도전동기 고정자 슬롯 형상 최적화)

  • Park, S.B.;Lee, H.B.;Park, I.H.;Chung, T.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.150-152
    • /
    • 1994
  • In this paper, the optimum shape design of stator slot of induction motors for iron loss reduction is proposed. To obtain the flux distribution in induction motors, 2-D finite element method with voltage source is employed. The iron loss is calculated from the iron loss data given by the iron manufacturer. To calculate the sensitivity of iron loss to shape variation, the sensitivity analysis of discrete approach is used. The proposed algorithm is applied to a 3-phase squirrel cage induction motor. The nodes at stator slot boundary of the induction motor are defined as design parameters. By controlling these parameters under the constant volume of iron, we can minimize the iron loss. Furthermore, the stator copper loss is reduced by increasing the slot area. So the stator slot area is determined at the point that the summation of iron loss and copper loss of stator is minimized. Since the constraint of constant volume of iron is nonlinear to the design parameters, the Gradient Projection method is used as an optimization algorithm.

  • PDF

[ $Sm_2Fe_{17}$ ] Prepared by Calciothermic Reduction-Diffusion Using Different Iron Powders

  • Boareto, J.C.;Soyama, J.;Felisberto, M.D.V.;Hesse, R.;Pinto, A.V.A.;Taylor, T.R.;Wendhausen, P.A.P.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1187-1188
    • /
    • 2006
  • This paper compares the effect of using different types of iron powders for the preparation of $Sm_2Fe_{17}$ by calciothermic reduction-diffusion (CRD). Three types of iron powder were used: carbonyl, sponge and water atomized. The results show that, when immediately nitrogenated after the CRD process, $Sm_2Fe_{17}$ prepared from sponge and water atomized iron powders yield $Sm_2Fe_{17}N_3$-magnets with a high degree of texture. However, after a suitable treatment with hydrogen followed by nitrogenation, $Sm_2Fe_{17}$-powders made from Carbonyl iron produce magnets with the best quality regarding coercivity, remanence and degree of texture.

  • PDF

Effect of oxidation-Reduction Hating Conditions on Coating Adherence of Hot-Dip Galvanized Steel Containing silicon (Si함유강의 용융아연 도금부착성에 미치는 산화-환원 열처리 영향)

  • 김종상
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.2
    • /
    • pp.101-108
    • /
    • 1998
  • The effect of oxidation-reduction heating conditions on coating adherence of hot-dip galvanized steel containing silicon has beeninvestigated. The presence of a stbke sillicon oxide formed on the steel surface has been shown to be very detrimenal to proper wetting by liquid zinc. When the steel has more than the critical sillicon content neeled to from a stable external oxide, the use of oxidation-reduction method has been found successful in obtaining a good quality, coated product with excellence adhreence. This can be explained by the formation of an iron oxide. The iron oxrtion of the scale is reduced, leaving the stable oxides dispersed in a fresh metallic iron surface layer. This reduced iron surface is easily wetted by the liquid zinc and excellent adherence is obtained.

  • PDF

Enhance degradation of insecticide chlorpyrifos by iron salts and potassium persulfate during zerovalent iron treatment in aqueous solution

  • Rahman, M. Mokhlesur;Hwang, Jung-In;Kwak, Se-Yeon;Kim, Jang-Eok
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.4
    • /
    • pp.383-389
    • /
    • 2018
  • Degradation of the insecticide O,O-diethyl O-3,5,6-trichloro-2-pyridyl phosphorothioate (chlorpyrifos) in aqueous solution was investigated using iron salts and potassium persulfate during ZVI treatment through a series of batch experiments. The degradation rate of chlorpyrifos increased with increases in the concentrations of iron salts and potassium persulfate in the aqueous system. Ferric chloride was found to be the most effective iron salt for the ZVI-mediated degradation of chlorpyrifos in aqueous solution. Further, the iron salts tested could be arranged in the following order in terms of their effectiveness: $FeCl_3$> $Fe_2(SO_4)_3$> $Fe(NO_3)_3$. The persulfate-ZVI system could significantly degrade chlorpyrifos present in the aqueous medium. This revealed that chlorpyrifos degradation by treatment with $Fe^0$ was promoted on adding ferric chloride and potassium persulfate. The kinetics of the degradation of chlorpyrifos by persulfate-amended $Fe^0$ was higher than that for iron-salt-amended $Fe^0$. This suggests that using a sequential $Fe^0$ reduction-ferric chloride or $Fe^0$ reduction-persulfate process may be an effective strategy to enhance the removal of chlorpyrifos in contaminated water.

Study on Enterprise Value and Asset Structure Optimization of the Iron and Steel Industry in China under Carbon Reduction Strategy

  • ZHU, Hong Hong;SUN, Yue Yao;LI, Jin Bao
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.3
    • /
    • pp.11-22
    • /
    • 2022
  • The iron and steel sector is caught between two worlds: "carbon reduction" and "development." The goal of this study is to show that optimizing asset structure to boost intangible assets, particularly brand assets, is a viable strategy to achieve low-carbon development. This study uses panel data from 38 A-share companies in China's iron and steel industry from 2010 to 2020, as well as World Brand Lab data, to create a comprehensive impact index of enterprise value from the standpoint of an asset structure optimization, and to test the impact of intangible assets and brand equity on enterprise value. The findings show that: the asset structure of iron and steel enterprises is closely related to enterprise value, implying that iron and steel industry development necessitates a transformation of quantity control and quality improvement; the proportion of intangible assets in the asset structure of iron and steel enterprises plays a positive and critical role in enterprise value under surplus conditions. The iron and steel industry begins to shift from tangible to intangible assets; there is heterogeneity in the iron and steel industry transformation. Given certain technological levels, the share of brand assets contributes significantly to the increase in enterprise value.

A Study on Reduction Treatment of EAF′s Dusts Mixed with Millscale (電氣爐製鋼粉塵과 millscale 混合펠릿의 還元擧動에 관한 硏究)

  • 윤기병
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.45-52
    • /
    • 2000
  • Generally, the residues of EAF's dusts treated by reduction process at high temperature are disposed. If the residues can be recycled as iron sources of EAF by upgrading their iron contents, it can be expected to reduce the amounts of disposed wastes and the environmental impacts. Reduction of EAF's dusts mixed with millscale was carried out in rotary hearth furnace to upgrade iron contents of reduction residues. Dusts should be reduced rapidly to protect from reoxidation of reduced iron residue which can be reoxidized at high temperature. In our experimental conditions, optimum reduction time was about 40min. and iron contents of the residues were increased with increasing mixing ratio of millscale and upgrade to 85% at 50%wt mixing ratio. Zinc and lead contents in residues were about 3% and 0.5% respectively. The residues reduced rapidly must be recycled in EAF because heavy metal elements in the residues can be extracted easily and contaminate air and water.

  • PDF

철과 양수성 물질을 이용한 PCE와 크롬 제거에 관한 연구

  • 조현희;천병식;박재우
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.68-71
    • /
    • 2004
  • Effects of surfactants and natural organic matter (NOM) on the sorption and reduction of tetrachloroethylene (PCE) and chromate with iron were examined in this study. PCE and chromate reduction by iron depended on the ionic type of the surfactants in this study. The apparent reaction rate constants of PCE with Triton X-100 and hexadecyltrimethyl ammonium (HDTMA) at one half and two times of the critical micelle concentration (CMC) were relatively higher than without surfactants because of the enhanced PCE partitioning and surface concentration. In the presence of sodium dodecyl benzene sulfonate (SDDBS) at 2000 mg/L and NOM at 50 mg/L, the apparent reaction rate constants of PCE increased, but TCE production decreased. The enhanced removal rate of PCE was not due to the dechlorination, and the sorption was dominant iron with SDDBS and NOM. The apparent reaction rate constants of chromate by iron with Triton X-100 and NOM were 1.4-3.1 times lower than without surfactants while that with HDTMA was two times higher than without HDTMA, When the sorbed HDTMA molecules form admicelles, negatively-charged chromate has an affinity for the positively-charged HDTMA head group.

  • PDF

Electrochemical Reduction of Perchlorate Ion on Porous Carbon Electrodes Deposited with Iron Nanoparticles (영가철 나노 입자가 전착된 다공성 탄소전극을 이용한 과염소산 이온의 전기화학적 환원)

  • Rhee, Insook;Kim, Eun Yong;Lee, Bokyoung;Paeng, Ki-Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.2
    • /
    • pp.81-85
    • /
    • 2015
  • A method for degradation of the perchlorate anion ($ClO{_4}^-$) has been studied using electrochemically generated zero-valent iron (ZVI) deposited on a porous carbon electrode. The first strategy of this study is to produce the ZVI via the electrochemical reduction of iron (II) on a porous carbon electrode coated with a conducting polymer, instead of employing expensive $NaBH_4$. The present method produced well distributed ZVI on conducting polymer (polypyrrole thin film) and increased surface area. ZVI surface can be regenerated easily for successive reduction. The second strategy is to apply a mild reducing condition (-0.3 V) to enhance the efficiency of the degradation of perchlorate with ZVI without the evolution of hydrogen. The electrochemically generated ZVI nanoparticles may offer an alternative means for the complete destruction perchlorate without evolution of hydrogen in water with high efficiency and at low cost.