• Title/Summary/Keyword: reduction coefficient

Search Result 1,319, Processing Time 0.029 seconds

A Study on Resisitance Performance of the Straight-Framed V-Bottom Hull Forms with High Displacement-Length Ratio (고(高) 배수량일장(排水量一長) 비(比) V-형(型) 직선늑골선형(直線肋骨船型)의 추진저항성능(推進抵抗性能)에 관(關)하여)

  • Kyu-Jong,Cho
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.6 no.1
    • /
    • pp.25-34
    • /
    • 1969
  • From viewpoints of over-all ship economy the straight framed V-bottom hull forms with chines are considered to be attractive even for usual commercial vessels, because increments of resistance over that of round hull forms, if any, can be well compensated with reduction in construction cost.[1] To investigate the influences of both prismatic coefficient and chine elevation on resistance performance, three models of straight-framed V-bottom hull forms which are similar to Prof. C. Ridgely-Nevitt's W-18, W-8, and W-20[2],[3] in size and hull form coefficients were tested at the SNU Ship Model Towing Tank for resistance measurements. They are of Cp=0.60, 0.65 and 0.70 and of ${\Delta}/(0.01L)^3=300$. Influence of variation of chine elevation on resistance performance were observed with the test results obtained at normal condition, and at the trimed by the stern by 2% and 4% of $L_{bp}$ at normal condition under same displacement. The hull form characteristics are shown in Table 1, and in Fig. 1, 2, 3, 4 and 5. The test results are shown in Fig 8, 9 and 10 in the form of Cr vs. $V/\sqrt{L}$ curves taking Cp as a parameter for normal condition, trim by the stern in 2% and 4% $L_{bp}$ at normal condition , respectively. Cr vs. $V/\sqrt{L}$ curves taking trim condition as a parameter are also shown in Fig 11, 12 and 13 for Cp=0.60 and 0.70, respectively. The best and the worst trim condition at given $V/\sqrt{L}$ in viewpoint of Cr are plotted for each Cp-value as shown in Fig 14, 15 and 16. From the above results the following conclusions are derived: (1) In general, the resistance performance of the straight-framed V-bottom hull forms are not inferior to those of round hull forms. At a certain range of $V/\sqrt{L}$ the former gives less resistance than the latter. (2) Regarding influences of Cp on Cr, it is observed that, at $V/\sqrt{L}$ less than about 0.925, the greater Cp-value gives the more increment of Cr, and that, at $V/\sqrt{L}$ greater than about 0.925 the smaller Cp-value gives the more increment of Cr. It is also noteworthy that the model of Cp=0.70 has remarkable hump on Cr vs. $V/\sqrt{L}$ curve between $V/\sqrt{L}=0.80$ and 0.90. (3) For higher speed within the test range, the chine elevation having the steeper slope around bow and the easier slope around amidship and stern, refered to watering, give the better results in resistance performance. (4) Assuming the chine elevations adopted for the tested models were not of the best, we would expect further improvement of resistance performance for such form. Hence, a systematic study on chine elevation is very disirable to prepare design data of general purpose for the such hull forms.

  • PDF

Contrast Optimization using of Weight-based Injection Protocol in Pediatric Abdomen CT Examination (소아 복부 CT 검사에서 체중에 기반한 조영제 주입 프로토콜 적용에 따른 조영증강의 최적화)

  • Kim, Yung-Kyoon;Han, Dong-Kyoon
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.575-584
    • /
    • 2021
  • The aim of this study was to achieve optimal portal phase while reducing contrast medium by applying weight-based dose protocol compared to standard fixed dose protocol to performing of pediatric abdominal CT examination. Discovery 750HD (General Electric Medical Systems, Milwaukee, USA) was used, and a total of 167 children consisting of 85 men and 82 women under the age of 18 were studied. The group in which the 300 mgI/ml(Xenetix, Guerbet, France) contrast medium was fixedly injected at twice body weight and the group injected with physiological saline while gradually decreasing the injection amount by 10% while applying the weight-based protocol were distinguished. Also, the CT number and SNR of abdominal organs were compared and evaluated while changing the scan delay time. Subjective image quality of enhancement and beam-hardening artifacts of around the heart was assessed with five-point criterion. The group adapted weight-based protocol with 20% reduction in contrast medium was most similar in contrast enhancement in the group with fixed injection at twice body weight. Furthermore, the group with a delay time of 20% had the highest contrast enhancement effect, and the difference in CT attenuation coefficient from the group scanned immediately after injection of the contrast media. Therefore, the appropriate delay time after injection of the contrast agent increased the contrast enhancement of the parenchymal organ. In addition, the weight-based injection protocol with normal saline reduced artifacts around the heart, and the effect of contrast enhancement could be maintained. In conclusion, it is possible to reduce dosage of contrast media through the application of weight-based injection protocols and appropriate latency, and to characterize optimal portal phase imaging on pediatric abdominal CT.

Environmental and Economic Impact of EV and FCEV Penetration into the Automobile Industry: A CGE Approach (전기 및 수소차 보급 확산의 환경적·경제적 영향분석: 계산가능일반균형모형(CGE)의 적용)

  • Han, Taek-Whan;Lim, Dongsoon;Kim, Jintae
    • Environmental and Resource Economics Review
    • /
    • v.28 no.2
    • /
    • pp.231-276
    • /
    • 2019
  • This paper analyzed the impact of the penetration of EV(electric vehicle) and FCEV(fuel cell electric vehicle) into the automobile industry, using a static CGE approach. There are contrasting view on the economic impact of EV/FCEV penetration: negative economic impact due to shrunken intermediate inputs versus positive impact because of input saving technical progress. Regarding environment, there is no clear consensus whether EV or FCEV will contribute to the reduction of $CO_2$ emissions in Korea. This study attempts to provide an answer to these questions. By giving shocks to the input coefficients of automobile industries and automobile using sectors, as well as to the final demands for energies. we integrated the Bass diffusion model into the CGE framework, The result suggests that the EV penetration has adverse impact on the $CO_2$ emission while the FCEV penetration has positive impact. On the other hand, both EV and FCEV have positive impacts on GDP. When considering automobile manufacturing sectors only, adverse impacts on $CO_2$ are demonstrated both for EV and FCEV. However, since the size of $CO_2$ increase is small, these results does not alter the overall effects.

Source Identification and Trends in Atmospheric Particulate-bound Mercury at Seoul and Baengnyeong, South Korea (서울과 백령도의 대기 중 입자상 수은의 분포 특성 및 발생원 추정연구)

  • Noh, Seam;Park, Kwang-Su;Kim, Hyuk;Yu, Seok-Min;Lim, Yong-Jae;Lee, Min-Do;Seok, Kwang-Seol;Kim, Younghee
    • Journal of Environmental Analysis, Health and Toxicology
    • /
    • v.21 no.4
    • /
    • pp.220-228
    • /
    • 2018
  • $PM_{2.5}$-bound mercury (PBM) was monitored at weekly intervals for three years (from 2014 to 2016) at an urban (Seoul) and rural site (Baengnyeong) in South Korea. The average PBM concentrations in $PM_{2.5}$ samples over the entire sampling period were $12{\pm}11pg/m^3$ and $36{\pm}34pg/m^3$ for Baengnyeong and Seoul, respectively. Seasonal differences were pronounced, with concentrations being highest in winter due to local meteorological conditions (high gas-particle coefficient due to low temperature and low mixing layer height in winter) as well as seasonal factors, such as coal combustion for heating purposes in China. In Baengnyeong, the significant positive correlation of PBM with $PM_{2.5}$, air pollutants, and heavy metals suggested that coal combustion in China might be the most important source of ambient mercury in Korea. In winter, no correlation of PBM with $PM_{2.5}$, air pollutants, and heavy metals was seen in Seoul. Furthermore, Seoul showed higher $PBM/PM_{2.5}$ and $Pb/PM_{2.5}$ ratios in winter due to the strong atmospheric oxidation-reduction reaction conditions as well as local and regional PBM sources. We conclude that immediate attention must be given to addressing PBM levels in Korea, including considering it as a key component of future air quality monitoring activities and mitigation measures.

The Evaluation of Durability Performance in Mortar Curbs Containing Activated Hwangtoh (활성 황토를 혼입한 모르타르 기반 경계석의 내구성능 평가)

  • Kwon, Seung-Jun;Kim, Hyeok-Jung;Yoon, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.520-527
    • /
    • 2020
  • Hwangtoh is the rich resource that accounts for about 15.0% of the domestic soil, and can be used as the admixture of concrete with Pozzolan characteristics if activated by rapidly freezing after burning with high temperature. In this study, the mortar curbs containing active hwangtoh were produced, based on the mixture for the mortar curbs sold on the market. The substitution rate of active hwangtoh were considered 10.0% and 25.0%, and the test items were selected to compressive and flexural strength tests, freezing/thawing resistance tests, accelerated carbonation tests, and accelerated chloride diffusion tests. In the results of the mechanical performance, it was showed that the highest strength was evaluated in OPC mixture, and the increase in strength was small by the increase of age, which was believed to be due to the fact that most of the strength in each mixture was created in three days of steam curing. The results of the freezing/thawing tests for 28 aged days showed the reduction rate of compressive strength was 85.0% or higher for all specimen, meeting the criteria presented. The accelerated carbonation tests were carried out on the specimen at 28 days of age, and the results showed that the mortar with active hwangtoh had lower carbonation resistance performance than mortar with OPC. The passed charge of each mixture was assessed in accordance with ASTM C 1202 on 28 and 91 aged days. The OPC mixture had "Low" rate and the mortar with active hwangtoh had "Moderate" rate. So it was thought that the mortar with active hwangtoh had appropriate resistance performance for chloride attack.

Performance Improvement Method of Deep Neural Network Using Parametric Activation Functions (파라메트릭 활성함수를 이용한 심층신경망의 성능향상 방법)

  • Kong, Nayoung;Ko, Sunwoo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.3
    • /
    • pp.616-625
    • /
    • 2021
  • Deep neural networks are an approximation method that approximates an arbitrary function to a linear model and then repeats additional approximation using a nonlinear active function. In this process, the method of evaluating the performance of approximation uses the loss function. Existing in-depth learning methods implement approximation that takes into account loss functions in the linear approximation process, but non-linear approximation phases that use active functions use non-linear transformation that is not related to reduction of loss functions of loss. This study proposes parametric activation functions that introduce scale parameters that can change the scale of activation functions and location parameters that can change the location of activation functions. By introducing parametric activation functions based on scale and location parameters, the performance of nonlinear approximation using activation functions can be improved. The scale and location parameters in each hidden layer can improve the performance of the deep neural network by determining parameters that minimize the loss function value through the learning process using the primary differential coefficient of the loss function for the parameters in the backpropagation. Through MNIST classification problems and XOR problems, parametric activation functions have been found to have superior performance over existing activation functions.

The Design and Numerical Analysis Method of Inclined Self-Supported Wall Using Cement Treated Soil (시멘트혼합처리토를 활용한 경사 자립식 흙막이벽의 설계법과 해석법에 관한 연구)

  • Kang-Han Hong;Byung-Il Kim;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.3
    • /
    • pp.11-25
    • /
    • 2023
  • In this study, the design and numerical analysis method of the inclined self-supported wall using cement treated soil were studied. In the case of the inclined self-supported wall, the active earth pressure decreased due to the decrease in the coefficient, Ka according to the slope (angle) and the weight decreasing effect, thereby increasing the overall stability. The wall with the slope caused a change in failure mode from overturning to sliding on the excavation side, and the optimal slope was evaluated to be about 10°. Compared to the strength reduction method, the overall stability in numerical analysis results in conservative results in limit equilibrium analysis, so it was found that this method should be attended when designing. As a result of the parameteric study, the stability on bearing capacity and compression failure did not significantly increase above the slope of 10° when the surcharge was small (about 20kPa or less). In the case of cohesion of the backfill, The results similar to numerical analysis were found to consider cohesion. It was evaluated that stability on sliding, oveturning, shear, and tension failure increases in proportion to the thickness of the wall, but there is no significant change in the stability on the bearing capacity and compressive failure regardless of the thickness of the wall above a certain angle (about 10°).

Epidemiological Aspects and Trends of the Extensive Eradication Programs for Bovine Brucellosis Outbreaks-Associated Human Brucellosis in Korea, 2002~2013

  • Lee, Won-Chang;Yoon, Hachung;Lee, Myeong-Jin;Kwon, Young Hwan
    • Korean journal of aerospace and environmental medicine
    • /
    • v.29 no.2
    • /
    • pp.72-76
    • /
    • 2019
  • Over the last decade, human brucellosis (HB) has become a principal zoonosis in Korea. The objective of this study was observing the epidemiological trends of the extensive eradication programs for bovine brucellosis (BB) outbreaks-associated HB in Korea from 2002 to 2013. The raw data analysis in this study was obtained from the website of brucellosis outbreaks by Korea Center for Disease Control and Prevention (KCDC) and Animal and Plant Quarantine Agency (QIA), Korea, 2002~2013. The number of cases of BB outbreaks-associated HB in Korea was increased after 2003 and peaked in 2006 before decreasing thereafter. There were a total of 89,240 infected BB in domestic cattle with a cumulative incidence rate (CIR) of 611.8 per 100,000 cattle; during the same period there were a total of 703 cases of HB with a CIR of 0.12 per 100,000 persons. Moreover, the correlation coefficient of brucellosis outbreaks between cattle and human was highly significant (r=+0.985). The attack ratio of HB was 7.88 per 1,000 BB cases. All of the control measures of HB were applied in the extensive eradication programs for brucellosis outbreaks of infection source in domestic animals and contributed significantly to the reduction in the outbreaks of HB in Korea.

Improvement of lower hybrid current drive systems for high-power and long-pulse operation on EAST

  • M. Wang;L. Liu;L.M. Zhao;M.H. Li ;W.D. Ma;H.C. Hu ;Z.G. Wu;J.Q. Feng ;Y. Yang ;L. Zhu ;M. Chen ;T.A. Zhou;H. Jia;J. Zhang ;L. Cao ;L. Zhang ;R.R. Liang;B.J. Ding ;X.J. Zhang ;J.F. Shan;F.K. Liu ;A. Ekedahl ;M. Goniche ;J. Hillairet;L. Delpech
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4102-4110
    • /
    • 2022
  • Aiming at high-power and long-pulse operation up to 1000 s, some improvements have been made for both 2.45 GHz and 4.6 GHz lower hybrid (LH) systems during the recent 5 years. At first, the guard limiters of the LH antennas with graphite tiles were upgraded to tungsten, the most promising material for plasma facing components in nuclear fusion devices. These new guard limiters can operate at a peak power density of 12.9 MW/m2. Strong hot spots were usually observed on the old graphite limiters when 4.6 GHz system operated with power >2.0 MW [B. N. Wan et al., Nucl. Fusion 57 (2017) 102019], leading to a reduction of the maximum power capability. With the new limiters, 4.6 GHz LH system, the main current drive (CD) and electron heating tool for EAST, can be operated with power >2.5 MW routinely. Long-pulse operation up to 100 s with 4.6 GHz LH power of 2.4 MW was achieved in 2021 and the maximal temperature on the guard limiters measured by an infrared (IR) camera was about 540 ℃, much below the permissible value of tungsten material (~1200 ℃). A discharge with a duration of 1056 s was achieved and the 4.6 GHz LH energy injected into the plasma was up to 1.05 GJ. Secondly, the fully-active-multijunction (FAM) launcher of 2.45 GHz system was upgraded to a passive-active-multijunction (PAM), for which the density of optimum coupling was relatively low (below the cut-off value). Good coupling with reflection coefficient ~3% has been achieved with plasma-antenna distance up to 11 cm for the new PAM. Finally, in order to eliminate the effect of ion cyclotron range of frequencies (ICRF) wave on 4.6 GHz LH wave coupling, the location of the ICRF launcher was changed to a port that is located 157.5° toroidally from the 4.6 GHz LH system and is not magnetically connected.

Reliability of mortar filling layer void length in in-service ballastless track-bridge system of HSR

  • Binbin He;Sheng Wen;Yulin Feng;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.47 no.1
    • /
    • pp.91-102
    • /
    • 2023
  • To study the evaluation standard and control limit of mortar filling layer void length, in this paper, the train sub-model was developed by MATLAB and the track-bridge sub-model considering the mortar filling layer void was established by ANSYS. The two sub-models were assembled into a train-track-bridge coupling dynamic model through the wheel-rail contact relationship, and the validity was corroborated by the coupling dynamic model with the literature model. Considering the randomness of fastening stiffness, mortar elastic modulus, length of mortar filling layer void, and pier settlement, the test points were designed by the Box-Behnken method based on Design-Expert software. The coupled dynamic model was calculated, and the support vector regression (SVR) nonlinear mapping model of the wheel-rail system was established. The learning, prediction, and verification were carried out. Finally, the reliable probability of the amplification coefficient distribution of the response index of the train and structure in different ranges was obtained based on the SVR nonlinear mapping model and Latin hypercube sampling method. The limit of the length of the mortar filling layer void was, thus, obtained. The results show that the SVR nonlinear mapping model developed in this paper has a high fitting accuracy of 0.993, and the computational efficiency is significantly improved by 99.86%. It can be used to calculate the dynamic response of the wheel-rail system. The length of the mortar filling layer void significantly affects the wheel-rail vertical force, wheel weight load reduction ratio, rail vertical displacement, and track plate vertical displacement. The dynamic response of the track structure has a more significant effect on the limit value of the length of the mortar filling layer void than the dynamic response of the vehicle, and the rail vertical displacement is the most obvious. At 250 km/h - 350 km/h train running speed, the limit values of grade I, II, and III of the lengths of the mortar filling layer void are 3.932 m, 4.337 m, and 4.766 m, respectively. The results can provide some reference for the long-term service performance reliability of the ballastless track-bridge system of HRS.