• Title/Summary/Keyword: reduced beam section

Search Result 120, Processing Time 0.037 seconds

Effects of Multi-stepwise TPSM on Improving the Behavior of H-beam bridge (H형강 교량의 성능개선을 위한 다단계 온도프리스트레싱 효과 분석)

  • Ahn, Jin Hee;Kim, Jun Hwan;Jung, Chi Young;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.5
    • /
    • pp.527-537
    • /
    • 2007
  • The main girders and cross-beams of an H-beam bridge consisted of factory-made H-beams, providing better conditions for quality control. Also, on-site fabrication works can be minimized and most of the stiffeners can be omitted, enabling simple and economic construction. In this study, the effect of the Multi-Stepwise TPSM (M-TPSM) on improving the maximum span length and section efficiency is analyzed. Compared to a 30-m-long, five-girder conventional plate girder bridge, structural analysis results showed that 50.7~55.1% of the girder height and 24.1~26.2% of the self-weight may be reduced by the application of M-TPSM to a five-girder H-beam bridge constructed with H-$900{\times}300$beams. In case of conventional H-beam bridges without M-TPSM, it was found that seven girders are required for a similar level of load-carrying capacity. Therefore, it is concluded that by the application of the M-TPSM, the H-beam bridge would become one of most cost-competitive options for short- and medium-span bridges.

The comparison of weld shrinkage between Electron beam welding and Narrow-gap TIG welding for stainless steel (스테인레스강에 대한 전자빔용접과 협개선TIG 용접수축량 비교)

  • Kim Yong Jae;Jeong Won Hui;Sim Deok Nam;Jeong In Cheol
    • Proceedings of the KWS Conference
    • /
    • v.43
    • /
    • pp.76-78
    • /
    • 2004
  • The phenomenon of weld shrinkage mainly occurs owing to residual stress by heating, which largely effects on welding quality, Actually as the shrinkage rate depends on the weld deposit amount, so it is desired that the sectional area of weld joint shall be reduced. In this respect the Electron beam welding has more profitable position compare to Narrow-gap TIG welding which is even superior to other arc welding processes. In case of thick austenitic stainless steel the shrinkage rate of Electron beam welding has about $10\%$ of Narrow-gap TIG welding's, which means that residual stress is a lot less than that of Narrow-gap TIG welding. And heat input and welded section area also indicate large difference between two processes.

  • PDF

Experimental study on all-bolted joint in modularized prefabricated steel structure

  • Wu, Zhanjing;Tao, Zhong;Liu, Bei;Zuo, Heng
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.613-620
    • /
    • 2020
  • The research study is focuses on a form of all-bolted joint with the external ring stiffening plate in the prefabricated steel structure. The components are bolted at site after being fabricated in the factory. Six specimens were tested under cyclic loading, and the effects of column axial compression ratio, concrete-filled column, beam flange sub plate, beam web angle cleats, and spliced column on the failure mode, hysteretic behavior and ductility of the joints were analyzed. The results shown that the proposed all-bolted joint with external ring stiffening plate performed high bearing capability, stable inflexibility degradation, high ductility and plump hysteretic curve. The primary failure modes were bucking at beam end, cracking at the variable section of the external ring stiffening plate, and finally welds fracturing between external ring stiffening plate and column wall. The bearing capability of the joints reduced with the axial compression ratio increased. The use of concrete-filled steel tube column can increase the bearing capability of joints. The existence of the beam flange sub plate, and beam web angle cleat improves the energy dissipation, ductility, bearing capacity and original rigidity of the joint, but also increase the stress concentration at the variable section of the external reinforcing ring plate. The proposed joints with spliced column also performed desirable integrity, large bearing capacity, initial stiffness and energy dissipation capacity for engineering application by reasonable design.

Flexural Fracture Properties of Reinforced Concrete Beam with Latex Contents (라텍스 혼입률에 따른 철근콘크리트의 휨파괴 거동특성)

  • Jeong, Won-Kyong;Kim, Dong-Ho;Lee, Joo-Hyong;Lim, Hong-Beom;Yun, Kyong-Ku
    • Journal of Industrial Technology
    • /
    • v.22 no.A
    • /
    • pp.177-184
    • /
    • 2002
  • Reinforced concrete(R/C) is commonly used to structures because they have many merits that compressive strength, economy and so on. However, reinforced concrete has a crack at the tensile section which is due to the relatively lower tensile strength than its compressive strength Latex modified concrete(LMC) has higher tensile and flexural strength than the ordinary portland cement, due to the interconnections of hydrated cement and aggregates by a film of latex particles. The purpose of this study was to investigate the flexural behavior of reinforced concrete beam with latex modified concrete, having the main experimental variables such as concrete types(ordinary portland cement concrete, latex modified concrete), latex contents(0%, 15%), flexural steel ratios(0.012, 0.0235), and with/without shear reinforcement. The beam of LMC showed considerably higher initial cracking loads and ductility than that of OPC, but, similar to ultimate strength and deflection. This might be attributed to the interlocking of hydrated cement and aggregates by a film of latex particles, water retention due to hydrophobic, and colloidal properties of the latexes resulting in reduced water evaporation. The beam with latex modified concrete could be adopted at field for controlling and reducing the tensile crack due to its higher tensile strength.

  • PDF

Analytical Study for Seismic Retrofit of SMRFs Connections (철골모멘트접합부의 내진보강에 관한 해석적 연구)

  • Oh, Sang Hoon;Kim, Young Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.3
    • /
    • pp.445-454
    • /
    • 2008
  • Based on previous research on steel moment connections, experimental and analytical results showed that the deformation capacity was poor in specimens using RHS columns and with conventional weld access holes and strain concentration at the end of beam is influenced by the efficiency in transmitting the moment in the web of beam through the beam-to-column joint. This paper is focused on the retrofitting of pre-Kobe steel moment frame connections using a stiffened RBS and a welded horizontal stiffener. These retrofitting methods were considered only in beam bottom flange. A parametric study was performed using nonlinear finite element analysis to elucidate and improve the retrofit methods of connections.

A Study on the Shear Strengthening Effect of Reinforced Concrete Beams with Structural Damage (구조적 손상을 입은 철근콘크리트 보의 전단보강 효과에 관한 연구)

  • Shin, Yong-Seok;Kim, Jeong-Hoon;Kim, Jeong-Sup;Kim, Kwang-Seok;Cho, Cheol-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.5
    • /
    • pp.43-51
    • /
    • 2008
  • This study examines shear capacity performance and structural characteristics of reinforced concrete beam using carbon fiber sheet(CFS), g)ass fiber sheet(GFS), glass fiber steel plate(GSP) and carbon fiber bar CB) which are reinforcing materials for reinforced concrete beam in order to produce similar condition to repair and reinforce actual structure and aims to provide data available In designing and constructing reinforced concrete structures under the structural damage. This study obtains the following conclusions. After considering the shear experiment results. it was indicated that the CB reinforced test object was the best in the shear capacity improvement and ductility capacity as it was contained in the concrete and was all operated, Also, GFS reinforced test object indicated the reduced flexural capacity but good shear capacity. GSP reinforced test object had bigger reinforcing strength than other reinforcing test objects. On the other hand, it showed the lowest reinforcement effect as compared section thickness of reinforced material because it showed the bigger relativity a section thickness of reinforced material. If the adherence to the concrete is improved, it will seem to show bigger reinforcement effect.

Flutter suppression of long-span suspension bridge with truss girder

  • Wang, Kai;Liao, Haili;Li, Mingshui
    • Wind and Structures
    • /
    • v.23 no.5
    • /
    • pp.405-420
    • /
    • 2016
  • Section model wind tunnel test is currently the main technique to investigate the flutter performance of long-span bridges. Further study about applying the wind tunnel test results to the aerodynamic optimization is still needed. Systematical parameters and test principle of the bridge section model are determined by using three long-span steel truss suspension bridges. The flutter critical wind at different attack angles is obtained through section model flutter test. Under the most unfavorable working condition, tests to investigate the effects that upper central stabilized plate, lower central stabilized plate and horizontal stabilized plate have on the flutter performance of the main beam were conducted. According to the test results, the optimal aerodynamic measure was chosen to meet the requirements of the bridge wind resistance in consideration of safety, economy and aesthetics. At last the credibility of the results is confirmed by full bridge aerodynamic elastic model test. That the flutter reduced wind speed of long-span steel truss suspension bridges stays approximately between 4 to 5 is concluded as a reference for the investigation of the flutter performance of future similar steel truss girder suspension bridges.

Experimental Study on Seismic Retrofit of Steel Moment Connections Considering Constraint Effect of the Floor Slab (바닥슬래브에 의해 구속된 철골 모멘트접합부의 내진보강에 관한 실험적 연구)

  • Oh, Sang Hoon;Kim, Young Ju;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.2 s.69
    • /
    • pp.247-255
    • /
    • 2004
  • An experimental program was undertaken to develop seismic retrofit methods of existing steel moment connections with floor slab for improved seismic performance. Five full-scale composite specimens were tested under cyclic loading. Conventional through-diaphragm connections [please check this; no search results were found for through-diaphragm connections] composed of square-tube column and H-beam were retrofitted by adding either a bottom-flange dogbone (RBS) or an improved welded horizontal stiffener at the beam bottom flange. The effectiveness of the proposed retrofit connections schemes was evaluated. The specimen retrofitted using the RBS concept at the bottom flange showed poor connection ductility. In contrast. specimens with the proposed horizontal stiffener details exhibited improved connection ductility.

Design and Impact Analysis of Automotive Bumper Beam Using Aluminum Foam (알루미늄 폼을 사용한 자동차 범퍼 빔의 설계 및 충돌해석)

  • Bang, Seung-Ok;Kim, Sei-Hwan;Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1552-1558
    • /
    • 2011
  • In this paper, the automotive beam using aluminium foam is designed and the impact analysis is carried out. The analysis model is the beam of actual size with B- type section structure. At the frontal crash of low speed, ANSYS AUTODYN is used by predicting the behavior of deformation and its internal energy. By the use of 7075-T6 aluminum alloy, the weight is reduced as much as 55% than steel. The deformation at the bumper foam of aluminum is similar with that of steel and the impact energy reduction at aluminum is more than steel. The foam filled with aluminum as much as 50 % has more impact energy absorption than the completely filled aluminum foam.

Ductile capacity study of buckling-restrained braced steel frame with rotational connections

  • Mingming Jia;Jinzhou He;Dagang Lu
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.417-433
    • /
    • 2023
  • The maximum ductility and cumulative ductility of connection joints of Buckling-Restrained Braced Frames (BRBF) are critical to the structural overall performance, which should be matched with the BRB ductility. The two-story and one-span BRBF with a one-third scale was tested under cyclic quasi-static loading, and the top-flange beam splice (TFBS) rotational connections were proposed and adopted in BRBF. The deformation capacity of TFBS connections was observed during the test, and the relationship between structural global ductility and local connection ductility was studied. The rotational capacity of the beam-column connections and the stability performance of the BRBs are highly relevant to the structural overall performance. The hysteretic curves of BRBF are stable and full under large displacement demand imposed up to 2% story drift, and energy is dissipated as the large plastic deformation developed in the structural components. The BRBs acted as fuses and yielded first, and the cumulative plastic ductility (CPD) of BRBs is 972.6 of the second floor and 439.7 of the first floor, indicating the excellent energy dissipation capacity of BRBs. Structural members with good local ductility ensure the large global ductility of BRBF. The ductile capacity and hysteretic behavior of BRBF with TFBS connections were compared with those of BRBF with Reduced Beam Section (RBS) connections in terms of the experimental results.