• 제목/요약/키워드: redshift

검색결과 393건 처리시간 0.025초

Selection of High Redshift Quasars with Infrared Medium-deep Survey

  • 전이슬;임명신;박원기;김지훈;전현성;최창수
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.77.2-77.2
    • /
    • 2010
  • A high redshift quasar is useful to investigate the early part of our universe. Since they are one of the brightest objects in the early universe, they can provide us with clues of the growth of super massive black holes and the early metal enrichment history. To discover the high redshift quasars, we designed a survey of wide area and moderate depth; Infrared Medium-deep Survey (IMS), a J-band imaging survey of ~200 $deg^2$ area where the multi-wavelength data sets exist. To obtain the J-band data, we are using the United Kingdom Infra-Red Telescope (UKIRT), and so far we have covered ~20 $deg^2$ with Y- or J-bands over three observing runs during 2009. We used color-color diagrams of multi-wavelength bands including i, z, Y, J, K, $3.6{\mu}m$ and $4.5{\mu}m$ to select high redshift quasars. The major challenge in the selection is many M/L/T dwarfs, low redshift galaxies, and instrumental defects that can be mistaken as a high redshift quasar. We describe how such contaminating sources can be excluded by adopting multiple color-color diagrams and eye-ball inspections. So far, our selection reveals two quasar candidates at z~7.

  • PDF

Current Status of the High Redshift Quasars Selection from Infrared Medium-deep Survey

  • Jeon, Yi-Seul;Im, Myung-Shin;Park, Won-Kee;Kim, Ji-Hoon;Jun, Hyun-Sung;Choi, Chang-Su
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.37.1-37.1
    • /
    • 2010
  • A high redshift quasar is useful to investigate the early part of our universe. Since they are one of the brightest objects in the early universe, they can provide us with clues of the growth of super massive black holes and the early metal enrichment history. To discover the high redshift quasars, we designed a survey of wide area and moderate depth; Infrared Medium-deep Survey (IMS), a J-band imaging survey of ~200 deg2 area where the multi-wavelength data sets exist. To obtain the J-band data, we are using the United Kingdom Infra-Red Telescope (UKIRT), and so far we have covered~40 deg2 with Y- or J-bands over 36 observing nights. We used color-color diagrams of multi-wavelength bands including i, z, Y, J, K, $3.6{\mu}m$ and $4.5{\mu}m$ to select high redshift quasars. The major challenge in the selection is many M/L/T dwarfs, low redshift galaxies, and instrumental defects that can be mistaken as a high redshift quasar. We describe how such contaminating sources can be excluded by adopting multiple color-color diagrams and eye-ball inspections. So far, our selection reveals one quasar candidates at z~7 and a few candidates at z~6. In this poster presentation, we will update the current status of the quasar selection in the IMS fields.

  • PDF

Alcock-Paczynski Test with the Evolution of Redshift-Space Galaxy Clustering Anisotropy: Understanding the Systematics

  • Park, Hyunbae;Park, Changbom;Tonegawa, Motonari;Zheng, Yi;Sabiu, Cristiano G.;Li, Xiao-dong;Hong, Sungwook E.;Kim, Juhan
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.78.2-78.2
    • /
    • 2019
  • We develop an Alcock-Paczynski (AP) test method that uses the evolution of redshift-space two-point correlation function (2pCF) of galaxies. The method improves the AP test proposed by Li et al. (2015) in that it uses the full two-dimensional shape of the correlation function. Similarly to the original method, the new one uses the 2pCF in redshift space with its amplitude normalized. Cosmological constraints can be obtained by examining the redshift dependence of the normalized 2pCF. This is because the 2pCF should not change apart from the expected small non-linear evolution if galaxy clustering is not distorted by incorrect choice of cosmology used to convert redshift to comoving distance. Our new method decomposes the redshift difference of the 2-dimensional correlation function into the Legendre polynomials whose amplitudes are modelled by radial fitting functions. The shape of the normalized 2pCF suffers from small intrinsic time evolution due to non-linear gravitational evolution and change of type of galaxies between different redshifts. It can be accurately measured by using state of the art cosmological simulations. We use a set of our Multiverse simulations to find that the systematic effects on the shape of the normalized 2pCF are quite insensitive to change of cosmology over \Omega_m=0.21 - 0.31 and w=-0.5 - -1.5. Thanks to this finding, we can now apply our method for the AP test using the non-linear systematics measured from a single simulation of the fiducial cosmological model.

  • PDF

The Dark Energy Research Using Type Ia Supernovae in the GMT Era: The Evolution-Free and Dust-Free Test

  • Kim, Young-Lo;Kang, Yijung;Lim, Dongwook;Lee, Young-Wook
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.59.2-59.2
    • /
    • 2013
  • The luminosity evolution of Type Ia supernova (SN Ia) and dust extinction play major roles in the systematic uncertainties in the SN cosmology. In order to overcome these obstacles, here we propose to use GMT-GMACS to take spectra for early-type host-galaxies of SNe Ia in the redshift range between 0.2 and 1.0. This high-redshift sample will be taken from Dark Energy Survey (DES), which expects more than 200 early-type hosts at this redshift range. They will be compared with nearby early-type hosts, for which we are now obtaining low-resolution spectra. We will select host-galaxies of same population age range for both nearby and high-redshift samples to reduce the possible evolution effect. Since we are dealing with early-type galaxies, our test is also less affected by dust extinction. We expect that our evolution-free and dust-free dark energy test will provide more robust results on the nature of dark energy.

  • PDF

적색편이 공간에서 국부 요동지역 주변의 초면과 은하단에 응용 (THE CAUSTICS AROUND A LOCAL DENSITY PERTURBED REGION IN REDSHIFT SPACE AND THEIR IMPLICATIONS TO RICH CLUSTERS OF GALAXIES)

  • 송두종
    • Journal of Astronomy and Space Sciences
    • /
    • 제10권2호
    • /
    • pp.163-188
    • /
    • 1993
  • 적색편이 공간에서 보이는 국부 요동지역 주변의 초면은 프리이드만 배경 우주에 포함된 툴만 시공간 모형 관점에서 보면 국부 중력장에 유도된 국부 팽창율이 원인이 됨을 알고 있다. 초면은 국부적인 것으로서 요동지역에 포함된 질량에 크게 지배되고 물질들의 동력학적 상태와 밀접한 관계가 았다. 은하단의 밀도 분포 모형으로 광학 관측과 X-선 관측을 잘 맞추는 아벨 윤곽과 폴리트로프적 밀도 분포 윤곽을 택하여 틀만 시공간 모형으로 계산한 적색편이 공간에 나타나는 초면과 코마 은하단과 페르세우스 은하단 성분은하들에서 관측되는 적색편이-중심거리 형태와 비교하였을 때, 초면은 은하단의 크기와 질량에 한계값을 설정할 수 있었고, 뜨거운 기체의 물질 상태를 짐작할 수 있는 단서를 제공한다.

  • PDF

Mapping the real-space distributions of galaxies in SDSS DR7

  • Shi, Feng
    • 천문학회보
    • /
    • 제44권1호
    • /
    • pp.78.1-78.1
    • /
    • 2019
  • Using a method to correct redshift space distortion (RSD) for individual galaxies, we mapped the real space distributions of galaxies in the Sloan Digital Sky Survey (SDSS) Data Release 7(DR7). We use an ensemble of mock catalogs to demonstrate the reliability of this extension, showing that it allows for an accurate recovery of the real-space correlation functions and galaxy biases. We also demonstrate that, using an iterative method applied to intermediate scale clustering data, we can obtain an unbiased estimate of the growth rate of structure $f\sigma_8$, which is related to the clustering amplitude of matter, to an accuracy of $\sim 10\%$. Applying this method to the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7), we construct a real-space galaxy catalog spanning the redshift range $0.01 \leq z \leq 0.2$, which contains 584,473 galaxies in the North Galactic Cap (NGC). Using this data we, infer $0.376 \pm 0.038$ at a median redshift z=0.1, which is consistent with the WMAP9 cosmology at $1\sigma$ level. By combining this measurement with the real-space clustering of galaxies and with galaxy-galaxy weak lensing measurements for the same sets of galaxies, we are able to break the degeneracy between $f$, $\sigma_8$ and $b$. From the SDSS DR7 data alone, we obtain the following cosmological constraints at redshift $z=0.1$ for galaxies.

  • PDF

Evidence for a decelerating cosmic expansion from supernova cosmology

  • Lee, Young-Wook
    • 천문학회보
    • /
    • 제46권1호
    • /
    • pp.27.3-27.3
    • /
    • 2021
  • Supernova (SN) cosmology is based on the assumption that the width-luminosity relation (WLR) in the type Ia SN luminosity standardization would not vary with progenitor age. Unlike this expectation, recent age datings of stellar populations in host galaxies have shown significant correlations between progenitor age and Hubble residual (HR). It was not clear, however, how this correlation arises from the SN luminosity standardization process, and how this would impact the cosmological result. Here we show that this correlation originates from a strong progenitor age dependence of the WLR and color-luminosity relation (CLR), in the sense that SNe from younger progenitors are fainter each at given light-curve parameters x1 and c. This is reminiscent of Baade's discovery of two Cepheid period-luminosity relations, and, as such, causes a serious systematic bias with redshift in SN cosmology. We illustrate that the differences between the high-z and low-z SNe in the WLR and CLR, and in HR after the standardization, are fully comparable to those between the correspondingly young and old SNe at intermediate redshift, indicating that the observed dimming of SNe with redshift is most likely an artifact of over-correction in the luminosity standardization. When this systematic bias with redshift is properly taken into account, there is no evidence left for an accelerating universe, and the SN data now support a decelerating cosmic expansion. Since the SN cosmology has long been considered as the most direct evidence for an accelerating universe with dark energy, this finding poses a serious question to one of the cornerstones of the concordance model.

  • PDF

Discovery of high redshift galaxy clusters and superclusters and study of star formation-density relation

  • Hyun, Minhee;Im, Myungshin;Kim, Jae-Woo;Lee, Seong-Kook;Edge, Alastair C.
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.49.2-49.2
    • /
    • 2015
  • Galaxy cluster is the most important laboratoriy to study the effect of environment on galaxies, one of key questions in astronomy. In the local universe, it is well known that red, passive galaxies are concentrated in the cluster core. However, it is still controversial whether the star formation-density relation at the low redshift is retained in the distant universe. Many surveys have tried to find galaxy clusters at various epochs. However the optical dataset has limitations in finding galaxy clusters at z > 1, since the bulk of stellar emission of z > 1 galaxies is redshifted into the near-IR regime. We used the multi-wavelength data from the UKIDSS DXS (J and K bands), the SWIRE (4 IRAC bands), and the PAN-STARRS (g, r, i, z, y bands) and IMS (J band; Im et al. 2015, in preparation) in the European Large Area ISO Survey North1 (ELAIS-N1) field to search for high redshift galaxy clusters and study the properties of member galaxies. Using the multi-wavelength data, we investigated overdensities of galaxies at 0.2 < z < 1.6 based on the photometric redshift information. We found several superclusters where cluster candidates are concentrated within scales of few tens of Mpc at z ~ 0.9. Interestingly, some of the supercluster candidates consist of galaxy clusters which are dominated by blue galaxies. We will present high redshift galaxy cluster and supercluster candidates in ELAIS-N1 field and galaxy properties in different environments including dense clusters and fields.

  • PDF

AKARI SPECTROSCOPY OF QUASARS AT 2.5 - 5 MICRON

  • Im, Myungshin;Jun, Hyunsung;Kim, Dohyeong;Lee, Hyung Mok;Ohyama, Youichi;Kim, Ji Hoon;Nakagawa, Takao;QSONG Team
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.163-167
    • /
    • 2017
  • Utilizing a unique capability of AKARI that allows deep spectroscopy at $2.5-5.0{\mu}m$, we performed a spectroscopy study of more than 200 quasars through one of the AKARI mission programs, QSONG (Quasar Spectroscopic Observation with NIR Grism). QSONG targeted 155 high redshift (3.3 < z < 6.42) quasars and 90 low redshift active galactic nuclei (0.002 < z < 0.48). In order to provide black hole mass estimates based on the rest-frame optical spectra, the high redshift part of QSONG is designed to detect the $H{\alpha}$ line and the rest-frame optical spectra of quasars at z > 3.3. The low redshift part of QSONG is geared to uncover the rest-frame $2.5-5.0{\mu}m$ spectral features of active galactic nuclei to gain useful information such as the dust-extinction-free black hole mass estimators based on the Brackett lines and the temperatures of the hot dust torus. We outline the program strategy, and present some of the scientific highlights from QSONG, including the detection of the $H{\alpha}$ line from a quasar at z > 4.5 which indicates a rigorous growth of black holes in the early universe, and the $Br{\beta}$-based black hole mass estimators and the hot dust temperatures (~ 1100 K) of low redshift AGNs.

AKARI OBSERVATIONS OF DUSTY TORI OF ACTIVE GALACTIC NUCLEI

  • Oyabu, Shinki;Kaneda, Hidehiro;Izuhara, Masaya;Tomita, Keisuke;Ishihara, Daisuke;Kawara, Kimiaki;Matsuoka, Yoshiki
    • 천문학논총
    • /
    • 제32권1호
    • /
    • pp.157-161
    • /
    • 2017
  • The dusty torus of Active Galactic Nuclei (AGNs) is one of the important components for the unification theory of AGNs. The geometry and properties of the dusty torus are key factors in understanding the nature of AGNs as well as the formation and evolution of AGNs. However, they are still under discussion. Infrared observation is useful for understanding the dusty torus as thermal emission from hot dust with the dust sublimation temperature (~ 1500 K) has been observed in the infrared. We have analyzed infrared spectroscopic data of low-redshift and high-redshift quasars, which are luminous AGNs. For the low-redshift quasars, we constructed the spectral energy distributions (SEDs) with AKARI near-infrared and Spitzer mid-infrared spectra and decomposed the SEDs into a power-law component from the nuclei, silicate features, and blackbody components with different temperatures from the dusty torus. From the decomposition, the temperature of the innermost dusty torus shows the range between 900-2000 K. For the high-redshift quasars, AKARI traced rest-frame optical and near-infrared spectra of AGNs. Combining with WISE data, we have found that the temperature of the innermost dusty torus in high redshift quasars is lower than that in typical quasars. The hydrogen $H{\alpha}$ emission line from the braod emission line region in the quasars also shows narrow full width at half maximum of $3000-4000km\;s^{-1}$. These results indicate that the dusty torus and the broad emission line region are more extended than those of typical quasars.