• Title/Summary/Keyword: redshift

Search Result 393, Processing Time 0.027 seconds

Identifying Cluster Candidates in CFHTLS W2 Field

  • Paek, Insu;Im, Myungshin;Kim, Jae-Woo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.59.2-59.2
    • /
    • 2018
  • Recent studies of galaxy clusters have shown that the galaxy clusters in dense environment tend to have lower star formation rate in local universe with z < 1. However, this correlation is not significant in galaxy clusters with z > 1. The study of galaxy clusters around z=1 can yield insight into cosmological galaxy evolution. Nevertheless, the identification of galaxy clusters beyond the scope of immediate local universe requires wide field data in optical and near-infrared bands. By incorporating data from Canada-France-Hawaii Telescope Legacy Survey(CFHTLS) and Infrared Medium-Deep Survey(IMS), the photometric redshifts of galaxies in CFHTLS W2 field were calculated. Using spatial distribution and photometric redshifts, the galaxies in the field were divided into redshift bins. The image of each redshift bin was analyzed by measuring the number density within proper distance of 1Mpc. By comparing high density regions in consecutive redshift bins, we identified the cluster candidates and mapped the large-scale structure within the CFHTLS W2 field.

  • PDF

Testing Gravitational Weak-lensing Maps with Galaxy Redshift Surveys

  • Ko, Jongwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.42.1-42.1
    • /
    • 2014
  • A gravitational weak-lensing map provides a weighted "picture" of the projected surface mass density and is to be an important tool for identifying "mass-selected" clusters of galaxies. However, weak-lensing maps have a limitation due to the projection of large-sclae structure along the line-of-sight. Geller et al. (2010) and Kurtz et al. (2012) compared massive clusters identified in a dense redshift survey with significant weak-lensing map convergence peaks. Both assessments of the efficiency of weak-lensing map for cluster identification did not draw a general conclusion, because the sample is so small. Thus, we additionally perform deep imaging observations of fields in a dense galaxy redshift survey that contain galaxy clusters at z~0.2-0.5, using CFHT Megacam. Our study will provide an important opportunity to examine the efficiency and completeness of a weak-lensing selection, and further to improve the method of cluster identification in future weak-lensing surveys.

  • PDF

Theory of Cosmic Reionization in the New Era of Precision Cosmology

  • Ahn, Kyungjin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.234.2-234.2
    • /
    • 2012
  • As the accuracy in the measurement of cosmological parameters is ever-increasing in this era of precision cosmology, astrophysical constraints on high-redshift universe is also getting tighter. Three dimensional (3D) tomography of the high-redshift (z>~7) universe is expected to be made through the next-generation radio telescopes including various SKA pathfinders and SKA itself, which calls for extensive theoretical predictions. We present our new simulations of cosmic reionization covering the full dynamic range of radiation sources, and also the mock data for the (1) large-scale CMB polarization anisotropy for Planck mission, (2) small-scale, kinetic Sunyaev-Zel'dovich effect for South Pole Telescope project, and (3) 21-cm observations. We show that the new constraints on CMB from Planck will constrain the models of reionization significantly, which then should be tested by 3D tomography of high-redshift universe through the 21-cm observations by future radio telescopes.

  • PDF

Toward precise and accurate modeling of matter clustering in redshift space

  • Oh, Minji
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.40.3-40.3
    • /
    • 2018
  • This dissertation presents the results on two-dimensional Redshift space distortion (hereafter RSD) analyses of the large-scale structure of the universe using spectroscopic data and on improvement of modeling of the RSD effect. RSD is an effect caused by galaxies' peculiar velocity on their clustering feature in observation along the line of sight and is thus intimately connected to the growth rate of the structure in the universe, from which we can test the origin of cosmic acceleration and Einstein's theory of gravity at cosmic scales in the end. However, there are several challenges in modeling precise and accurate RSD effect, such as non-linearities and the existence of an exotic component, e.g. massive neutrino. As part of endeavors for modeling more precise and accurate galaxy clustering in redshift space, this dissertation includes a series of works for this issue. (More detailed descriptions were omitted.)

  • PDF

Cosmological Information from the Small-scale Redshift Space Distortions

  • Tonegawa, Motonari;Park, Changbom;Zheng, Yi;Park, Hyunbae;Hong, Sungwook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.41.3-42
    • /
    • 2018
  • Redshift space distortion (RSD) is known as a powerful cosmological probe. The large-scale RSD has been detected by various redshift surveys and continues to be a major target of ongoing surveys. On the other hand, the small-scale RSD, called finger-of-god (FoG) effect, also has cosmological information, because different cosmological parameters cause different halo mass functions and viriarized velocities. We define the "length" of FoG and examine its dependence on cosmological parameters using the Multiverse simulation. We also use the SDSS DR7 data to see how strong constraints current data sets could provide. It is found that the volume-limited subsample D5, consisting of ~100,000 galaxies at z~0.08, yields $\Delta \Omega_m ~ 0.02$.

  • PDF

The evolution of merger fraction for galaxies in NEP-Wide field

  • Kim, Eunbin;Jeong, Woong-Seob;Hwang, Ho Seong;Kim, Seong Jin;Goto, Tomotsugu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.77.1-77.1
    • /
    • 2019
  • We present the results of the merger fraction evolution for galaxies in NEP-Wide field depending on star formation mode and redshift. We select the galaxies which have AKARI 9 ㎛ detections as a sample for large number of galaxies. We use multi-wavelength data from GALEX to Herschel, and Subaru HSC i-band images for analysis. We classify the merger galaxies with using Gini and M20, which are non-parametric calculated by statmorph code. We obtain the total infrared luminosity from the SED modeling with using one band, AKARI 9 ㎛. We find that the merger fractions of galaxies in all different star formation mode increase as the redshift increases. However, with fixed mass range of 10.5 < log(M🞵) < 11.5, the merger fractions of starbursts significantly increase as the redshift increases compared to those of main sequence and quiescent galaxies. We discuss the implications of these results in this poster.

  • PDF

Cosmological Parameter Estimation from the Topology of Large Scale Structure

  • Appleby, Stephen
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.53.2-53.2
    • /
    • 2019
  • The genus of the matter density eld, as traced by galaxies, contains information regarding the nature of dark energy and the fraction of dark matter in the Universe. In particular, this topological measure is a statistic that provides a clean measurement of the shape of the linear matter power spectrum. As the genus is a topological quantity, it is insensitive to galaxy bias and gravitational collapse. Furthermore, as it traces the linear matter power spectrum, it is a conserved quantity with redshift. Hence the genus amplitude is a standard population that can be used to test the distance-redshift relation. In this talk, I present measurements of the genus extracted from the SDSS DR7 LRGs in the local Universe, and also slices of the BOSS DR12 data at higher redshift. I show how these combined measurements can be used to place cosmological parameter constraints on m, wde.

  • PDF

Transitional Dark Energy - A solution to the H0 tension

  • Keeley, Ryan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.59.2-59.2
    • /
    • 2019
  • In this talk, I will explain the implications of a rapid appearance of dark energy between the redshifts ($z$) of one and two on the expansion rate and growth of perturbations. Using both Gaussian process regression and a parametric model, I show that this is the preferred solution to the current set of low-redshift ($z<3$) distance measurements if $H_0=73~\rm km\,s^{-1}\,Mpc^{-1}$ to within 1\% and the high-redshift expansion history is unchanged from the $\Lambda$CDM inference by the Planck satellite. Dark energy was effectively non-existent around $z=2$, but its density is close to the $\Lambda$CDM model value today, with an equation of state greater than $-1$ at $z<0.5$. If sources of clustering other than matter are negligible, we show that this expansion history leads to slower growth of perturbations at $z<1$, compared to $\Lambda$CDM, that is measurable by upcoming surveys and can alleviate the $\sigma_8$ tension between the Planck CMB temperature and low-redshift probes of the large-scale structure.

  • PDF

Testing Web Feeding Model for Star Formation in Galaxy Clusters in the COSMOS Field

  • Ko, Eunhee;Im, Myungshin;Lee, Seong-Kook;Hyun, Minhee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.52.3-53
    • /
    • 2021
  • It is yet to be understood what controls the star formation activity in high-redshift galaxy clusters. One recently proposed mechanism is that the star formation activity in galaxy clusters are fed by gas and galaxies in large-scale structures surrounding them, which we call as "web feeding model". Using galaxies in the COSMOS2015 catalog, with mass completeness at log(M/M⦿)≥9.54 and reliable photometric redshift data (σΔz/(1+z) ≲ 0.01), we study the star formation activities of galaxy clusters and their surrounding environment to test the web feeding model. We first identify the overdense regions with number density exceeding the 4σ-level from photometric redshift data as galaxy clusters, and we find that they are well matched with clusters identified in the X-ray extended source catalog. Furthermore, we identify galaxy large scale structures, and will present the correlation or anti-correlation between quiescent galaxy fraction, an indicator of star-forming activity, and the prevalence of galaxy large scale structures.

  • PDF

THE INFRARED MEDIUM-DEEP SURVEY. V. A NEW SELECTION STRATEGY FOR QUASARS AT z > 5 BASED ON MEDIUM-BAND OBSERVATIONS WITH SQUEAN

  • JEON, YISEUL;IM, MYUNGSHIN;PAK, SOOJONG;HYUN, MINHEE;KIM, SANGHYUK;KIM, YONGJUNG;LEE, HYE-IN;PARK, WOOJIN
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.1
    • /
    • pp.25-35
    • /
    • 2016
  • Multiple color selection techniques are successful in identifying quasars from wide-field broadband imaging survey data. Among the quasars that have been discovered so far, however, there is a redshift gap at 5 ≲ z ≲ 5.7 due to the limitations of filter sets in previous studies. In this work, we present a new selection technique of high redshift quasars using a sequence of medium-band filters: nine filters with central wavelengths from 625 to 1025 nm and bandwidths of 50 nm. Photometry with these medium-bands traces the spectral energy distribution (SED) of a source, similar to spectroscopy with resolution R ~ 15. By conducting medium-band observations of high redshift quasars at 4.7 ≤ z ≤ 6.0 and brown dwarfs (the main contaminants in high redshift quasar selection) using the SED camera for QUasars in EArly uNiverse (SQUEAN) on the 2.1-m telescope at the McDonald Observatory, we show that these medium-band filters are superior to multi-color broad-band color section in separating high redshift quasars from brown dwarfs. In addition, we show that redshifts of high redshift quasars can be determined to an accuracy of Δz/(1 + z) = 0.002 - 0.026. The selection technique can be extended to z ~ 7, suggesting that the medium-band observation can be powerful in identifying quasars even at the re-ionization epoch.