• Title/Summary/Keyword: redox reaction

Search Result 372, Processing Time 0.123 seconds

Biogeochemical Effects of Hydrogen Gas on the Behaviors of Adsorption and Precipitation of Groundwater-Dissolved Uranium (지하수 용존 우라늄의 수착 및 침전 거동에서 수소 가스의 생지화학적 영향)

  • Lee, Seung Yeop;Lee, Jae Kwang;Seo, Hyo-Jin;Baik, Min Hoon
    • Economic and Environmental Geology
    • /
    • v.51 no.2
    • /
    • pp.77-85
    • /
    • 2018
  • There would be a possibility of uranium contamination around the nuclear power plants and the underground waste disposal sites, where the uranium could further migrate and diffuse to some distant places by groundwater. It is necessary to understand the biogeochemical behaviors of uranium in underground environments to effectively control the migration and diffusion of uranium. In general, various kinds of microbes are living in soils and geological media where the activity of microbes may be closely connected with the redox reaction of nuclides resulting in the changes of their solubility. We investigated the adsorption and precipitation behaviors of dissolved uranium on some solid materials using hydrogen gas as an electron donor instead of organic matters. Although the effect of hydrogen gas did not appear in a batch experiment that used granite as a solid material, there occurred a reduction of uranium concentration by 5~8% due to hydrogen in an experiment using bentonite. This result indicates that some indigenous bacteria in the bentonite that have utilized hydrogen as the electron donor affected the behavior (reduction) of uranium. In addition, the bentonite bacteria have showed their strong tolerance against a given high temperature and radioactivity of a specific waste environment, suggesting that the nuclear-biogeochemical reaction may be one of main mechanisms if the natural bentonite is used as a buffer material for the disposal site in the future.

Synthesis and Characterization of a Di-$\mu$-oxo-bridged Molybdeum(V) Complexes (두 개 산소가교형 몰리브덴(V) 착물의 합성과 그 성질에 관한 연구)

  • Doh, Gil Myung;Kim, Ill Chool;Choi, Bo Yong
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.198-203
    • /
    • 1995
  • The Mo(V) $di-\mu-oxo$ type $(Mo_2O_4(H_2O)_2L)$ complexes $(L:\;C_3H_7CH(SCH_2COOH)_2,\;C_6H_5CH(SCH_2COOH)_2,\;CH_3OC_6H_4CH(SCH_2COOH)_2,\;C_5H_{10}C(SCH_2COOH)_2,\;C_3H_7C(CH_3)(SCH_2COOH)_2,\;C_3H_7CH(SCH_2CH_2COOH)_2,\;C_6H_5CH(SCH_2CH_2COOH)_2)$ have been prepared by the reaction of $[Mo_2O_4(H_2O)_6]^{2+}$ with a series of dithiodicarboxy ligands. These complexes are completed by two terminal oxygens arranged trans to one another and each ligand forms a chelate type between two molybdenum. In $Mo_2O_4(H_2O)_2L$, two $H_2O$ coordinated at trans site of terminal oxygens. The prepared complexes have been characterized by elemental analysis, infrared spectra, electronic spectra, and nuclear magnetic resonance spectra. In the potential range -0.00 V to -1.00 V at a scan rate of 20 $mVs^{-1}$, a cathodic peak at -0.50∼-0.58 V (vs. SCE) and an anodic peak at -0.40∼-0.43 V (vs. SCE) have been observed in aquous solution. The ratio of the cathodic to anodic current ($I_{pc}/I_{pa}$) is almost 1, we infer that redox is reversible reaction.

  • PDF

Development of Visible-light Responsive $TiO_2$ Thin Film Photocatalysts by Magnetron Sputtering Method and Their Applications as Green Chemistry Materials

  • Matsuoka, Masaya
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.3.1-3.1
    • /
    • 2010
  • Water splitting reaction using photocatalysts is of great interest in the utilization of solar energy [1]. In the present work, visible light-responsive $TiO_2$ thin films (Vis-$TiO_2$) were prepared by a radio frequency magnetron sputtering (RF-MS) deposition method and applied for the separate evolution of $H_2$ and $O_2$ from water as well as the photofuel cell. Special attentions will be focused on the effect of HF treatment of Vis-$TiO_2$ thin films on their photocatalytic activities. Vis-$TiO_2$ thin films were prepared by an RF-MS method using a calcined $TiO_2$ plate and Ar as the sputtering gas. The Vis-$TiO_2$ thin films were then deposited on the Ti foil substrate with the substrate temperature at 873 K (Vis-$TiO_2$/Ti). Vis-$TiO_2$/Ti thin films were immersed in a 0.045 vol% HF solution at room temperature. The effect of HF treatments on the activity of Vis-$TiO_2$/Ti thin films for the photocatalytic water splitting reaction have been investigated. Vis-$TiO_2$/Ti thin films treated with HF solution (HF-Vis-$TiO_2$/Ti) exhibited remarkable enhancement in the photocatalytic activity for $H_2$ evolution from a methanol aqueous solution as well as in the photoelectrochemical performance under visible light irradiation as compared with the untreated Vis-$TiO_2$/Ti thin films. Moreover, Pt-loaded HF-Vis-$TiO_2$/Ti thin films act as efficient and stable photocatalysts for the separate evolution of $H_2$ and $O_2$ from water under visible light irradiation in the presence of chemical bias. Thus, HF treatment was found to be an effective way to improve the photocatalytic activity of Vis-$TiO_2$/Ti thin films. Furthermore, unique separate type photofuel cell was fabricated using a Vis-$TiO_2$ thin film as an electrode, which can generate electrical power under solar light irradiation by using various kinds of biomass derivatives as fuel. It was found that the introduction of an iodine ($I^-/{I_3}^-$) redox solution at the cathode side enables the development of a highly efficient photofuel cell which can utilize a cost-efficient carbon electrode as an alternative to the Pt cathode.

  • PDF

Electrochemical Properties of Lithium Secondary Battery and the Synthesis of Spherical Li4Ti5O12 Powder by Using TiCl4 As a Starting Material (TiCl4를 출발원료로한 구형 Li4Ti5O12 분말합성 및 리튬이차 전지특성)

  • Choi, Byung-Hyun;Ji, Mi-Jung;Kwon, Yong-Jin;Kim, Eun-Kyung;Nahm, Sahn
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.669-675
    • /
    • 2010
  • One of the greatest challenges for our society is providing powerful electrochemical energy conversion and storage devices. Rechargeable lithium-ion batteries and fuel cells are among the most promising candidates in terms of energy and power density. As the starting material, $TiCl_4{\cdot}YCl_3$ solution and dispersing agent (HCP) were mixed and synthesized using ammonia as the precipitation agent, in order to prepare the nano size Y doped spherical $TiO_2$ precursor. Then, the $Li_4Ti_5O_{12}$ was synthesized using solid state reaction method through the stoichiometric mixture of Y doped spherical $TiO_2$ precursor and LiOH. The Ti mole increased the concentration of the spherical particle size due to the addition of HPC with a similar particle size distribution in a well in which $Li_4Ti_5O_{12}$ spherical particles could be obtained. The optimal synthesis conditions and the molar ratio of the Ti 0.05 mol reaction at $50^{\circ}C$ for 30 minutes and at $850^{\circ}C$ for 6 hours heat treatment time were optimized. $Li_4Ti_5O_{12}$ was prepared by the above conditions as a working electrode after generating the Coin cell; then, electrochemical properties were evaluated when the voltage range of 1.5V was flat, the initial capacity was 141 mAh/g, and cycle retention rate was 86%; also, redox reactions between 1.5 and 1.7V, which arose from the insertion and deintercalation of 0.005 mole of Y doping is not a case of doping because the C-rate characteristics were significantly better.

Behaviors of Glucose Decomposition during Dilute-Acid Hydrolysis of Lignocellulosic Biomass (목질계 바이오매스의 묽은 산 가수분해 공정에서 포도당 분해물 거동)

  • Jeong, Tae-Su;Oh, Kyeong-Keun
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.267-272
    • /
    • 2009
  • During a dilute acid hydrolysis, degradation products are formed or liberated by pre-treatment of lignocelluloses depend on both the biomass and the pretreatment conditions such as temperature, time, pressure, pH, redox conditions, and addition of catalysts. In lignocellulosic biomass, sugars can be degraded to furfural which is formed from pentoses and 5-hydroxymethulfurfural (HMF) from hexoses. 5-HMF can be further degraded, forming levulinic acid and formic acid. Acetate is liberated from hemicellulose during hydrolysis. Some decomposed compounds hinder the subsequent bioconversion of the solubilized sugars into desired products, reducing conversion yields and rates during fermentation. In the present work, samples of rapeseed strawwere hydrolyzed to study the optimal pretreatment condition by assessing yields of sugars and decomposed products obtained under different reaction conditions ($H_2SO_4$ 0.5-1.25% (w/w), reaction time 0-20 min and temperature range 150-220 C). A careful analytical investigation of acid hydrolyzate of rapeseed straw has not yet been undertaken, and a well-closed mass balance for the hydrolyzate in general is necessary to verify the productivity and economic predictions for this process.

Chimie Douce Synthesis of Chalcogen-Doped Manganese Oxides (칼코겐이 도핑된 망간 산화물의 저온합성 연구)

  • Hwang, Seong-Ju;Im, Seung-Tae;Park, Dae-Hun;Yun, Yeong-Su
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.315-320
    • /
    • 2006
  • manganese oxides have been prepared by Chimie Douce redox reaction between permanganate and chalcogen element fine powder under acidic condition (pH = 1). According to powder X-ray diffraction analyses, the S- and Se-doped manganese oxides are crystallized with layered birnessite and tunnel-type -MnO2 structures, respectively. On the contrary, Te-doped compound was found to be X-ray amorphous. According to EDS analyses, these compounds contain chalcogen dopants with the ratio of chalcogen/manganese = 4-7%. We have investigated the chemical bonding character of these materials with X-ray absorption spectroscopic (XAS) analysis. Mn K-edge XAS results clearly demonstrated that the manganese ions are stabilized in octahedral symmetry with the mixed oxidation states of +3/+4. On the other hand, according to Se K- and Te L1-edge XAS results, selenium and tellurium elements have the high oxidation states of +6, which is surely due to the oxidation of neutral chalcogen element by the strong oxidant permanganate ion. Taking into account their crystal structures and Mn oxidation states, the obtained manganese oxides are expected to be applicable as electrode materials for lithium secondary batteries.

Effects of Electrolyte Concentration on Growth of Dendritic Zinc in Aqueous Solutions (수용액중 아연 덴드라이트의 성장 반응에 미치는 전해질 농도의 영향)

  • Shin, Kyung-Hee;Jung, Kyu-Nam;Yoon, Su-Keun;Yeon, Sun-Hwa;Shim, Joon-Mok;Joen, Jae-Deok;Jin, Chang-Soo;Kim, Yang-Soo;Park, Kyoung-Soo;Jeong, Soon-Ki
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.4
    • /
    • pp.390-396
    • /
    • 2012
  • In order to understand the nature of dendritic zinc growth, electrochemical zinc redox reaction on nickel plate was investigated in aqueous solutions containing different concentrations, 0.2, 0.1 and 0.02 $mol{\cdot}dm^{-3}$ (M), of zinc sulfate ($ZnSO_4$) or zinc chloride ($ZnCl_2$). Zinc ion was efficiently reduced and oxidized on nickel in the high-concentration (0.2 M) solution, whereas relatively poor efficiency was obtained from the other low-concentration solutions (0,1 and 0.02 M). Cyclic voltammetry (CV) analysis revealed that the 0.2 M electrolyte solution decomposes at more positive potentials than the 0.1 and the 0.02 M solutions. These results suggested that the concentration of electrolyte solution and anion would be an important factor that suppresses the reaction of the zinc dendrite formation. Scanning Electron Microscopy (SEM) data revealed that the shape of dendritic zinc and its growing behavior were also influenced by electrolyte concentration.

Recent Research Trends of Supercapacitors for Energy Storage Systems (에너지 저장시스템을 위한 슈퍼커패시터 최신 연구 동향)

  • Son, MyungSuk;Ryu, JunHyung
    • Clean Technology
    • /
    • v.27 no.4
    • /
    • pp.277-290
    • /
    • 2021
  • A supercapacitor, also called an ultracapacitor or an electrochemical capacitor, stores electrochemical energy by the adsorption/desorption of electrolytic ions or a fast and reversible redox reaction at the electrode surface, which is distinct from the chemical reaction of a battery. A supercapacitor features high specific power, high capacitance, almost infinite cyclability (~ 100,000 cycle), short charging time, good stability, low maintenance cost, and fast frequency response. Supercapacitors have been used in electronic devices to meet the requirements of rapid charging/discharging, such as for memory back-up, and uninterruptible power supply (UPS). Also, their use is being extended to transportation and large industry applications that require high power/energy density, such as for electric vehicles and power quality systems of smart grids. In power generation using intermittent power sources such as solar and wind, a supercapacitor is configured in the energy storage system together with a battery to compensate for the relatively slow charging/discharging time of the battery, to contribute to extending the lifecycle of the battery, and to improve the system power quality. This article provides a concise overview of the principles, mechanisms, and classification of energy storage of supercapacitors in accordance with the electrode materials. Also, it provides a review of the status of recent research and patent, product, and market trends in supercapacitor technology. There are many challenges to be solved to meet industrial demands such as for high voltage module technologies, high efficiency charging, safety, performance improvement, and competitive prices.

Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구)

  • Lee, Sung Hyun;Jeong, Young Jae;Lee, Jong Min;Kim, Dae Sung;Bae, Eun Ji;Hong, Seong Soo;Lee, Gun Dae
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2019
  • CdS and CdZnS/ZnO materials were prepared using precipitation method and used as photocatalysts for the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The prepared photocatalysts were also characterized by XRD and UV-vis DRS. The results indicated that the photocatalysts with intended crystalline structures were successfully obtained and both the CdS and CdZnS/ZnO can absorb visible light as well as UV. The photocatalytic activities were examined with the addition of scavenger for various active chemical species and the difference of reaction mechanisms over the catalysts were discussed. The $CH_3OH$, KI and p-benzoquinone were used as scavengers for ${\cdot}OH$ radical, photogenerated positive hole and ${\cdot}O_2{^-}$ radical, respectively. The CdS and CdZnS/ZnO showed different photocatalytic degradation mechanisms of RhB. It can be postulated that ${\cdot}O_2{^-}$ radical is the main active species for the reaction over CdS photocatalyst, while the photogenerated positive hole for CdZnS/ZnO photocatalyst. As a result, the predominant reaction pathways over CdS and CdZnS/ZnO photocatalysts were found to be the dealkylation of chromophore skeleton and the cleavage of the conjugated chromophore structure, respectively. The above results may be mainly ascribed to the difference of band edge potential of conduction and valence bands in CdS, CdZnS and ZnO semiconductors and the redox potentials for formation of active chemical species.

A Study on Electrochemical Behaviors of Samarium Ions in the Molten LiCl-KCl Eutectic Using Optically Transparent Electrode (LiCl-KCl 용융염에서 광학적으로 투명한 전극을 이용한 사마륨 이온의 전기화학적 거동에 관한 연구)

  • Lee, Ae-Ri;Park, Byung Gi
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.4
    • /
    • pp.313-320
    • /
    • 2017
  • A spectroelectrochemical method has been applied to investigate the electrochemical behaviors and identify the kinds of samarium ions dissolved in high temperature molten LiCl-KCl eutectic. An optically transparent electrode (OTE) fabricated with a tungsten gauze as a working electrode has been used to conduct cyclic voltammetry and potential step chronoabsorptometry. Based on the reversibility of the redox reaction of $Sm^{3+}/Sm^{2+}$, which was determined from the cyclic voltammograms, the formal potential and the diffusion coefficient were calculated to be -1.99 V vs. $Cl_2/Cl^-$ and $2.53{\times}10^{-6}cm^2{\cdot}s^{-1}$, respectively. From the chronoabsorptometry results at the applied potential of -1.5 V vs. Ag/AgCl (1wt%), the characteristic peaks of absorption for samarium ions were determined to be 408.08 nm for $Sm^{3+}$ and 545.62 nm for $Sm^{2+}$. Potential step chronoabsorptometry was conducted using the anodic and the cathodic peak potentials from the voltammograms. Absorbance analysis at 545.63 nm shows that the diffusion coefficient of $Sm^{3+}$ is $2.15{\times}10^{-6}cm^2{\cdot}s^{-1}$, which is comparable to the value determined by cyclic voltammetry at the same temperature.