• Title/Summary/Keyword: redox properties.

Search Result 303, Processing Time 0.028 seconds

Studies on the Biological and Chemical Properties of Musty Ginseng Root and its Causal Mechanism (적변삼의 생물.화학적 특성과 그 발생원인에 관하여)

  • 정영륜;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.1
    • /
    • pp.24-35
    • /
    • 1985
  • Rusty root of ginseng has been known as one of the limiting factors in ginseng production in Korea. An attempt was, therefore, made to elucidate biological and chemical natures of the rusty root, and the redox Potential of the ginseng cultivated soils were measured and compared with diseased and non-diseased soils. Reddish discoloration was most frequently observed on the epidermis of ginseng root and the pigments were accumulated in all epidermal cells of the diseased lesions. The lower the redox potential of the ginseng cultivated soil was, the more severe the rusty root was observed. Fe content in the diseased epidermis was 3 times higher than that of healthy one. Organic acids such as oxalic, malonic, succinic, and citric acids were also higher in the mss root than in the healthy one. Thin layer chromatogram of phenolic acid fractions obtained from the epidermal cells of the rusty root of ginseng exhibited 3 to 4 unidentified substances not found in the healthy root. Also lignification of the epidermal cells and the activity of phenylalanine ammonia lyase were greater in the rusty root than the healthy root. Colony formation and conidia production of F. solani, And mycelial growth and sclerotium formation of Sclerotinia sp. isolated from ginseng root were suppressed in a nutritionally minimal medium supplemented with water extract of rusty ginseng root epidermis. It is, therefore, suggested that rusty root of ginseng is caused by unfavorable rhizosphere environmental stress or stresses resulting abnormal metabolism in the root as a selfdefence mechanism of non-specific resistance responses.

  • PDF

Effects of Iron on Arsenic Speciation and Redox Chemistry in Acid Mine Water

  • Bednar A.J.;Garbarino J.R.;Ranville J.F.;Wildeman T.R.
    • Proceedings of the KSEEG Conference
    • /
    • 2004.12a
    • /
    • pp.9-28
    • /
    • 2004
  • Concern about arsenic is increasing throughout the world, including areas of the United States. Elevated levels of arsenic above current drinking-water regulations in ground and surface water can be the result of purely natural phenomena, but often are due to anthropogenic activities, such as mining and agriculture. The current study correlates arsenic speciation in acid mine drainage and mining influenced water with the important water-chemistry properties Eh, pH, and iron(III) concentration. The results show that arsenic speciation is generally in equilibrium with iron chemistry in low pH AMD, which is often not the case in other natural-water matrices. High pH mine waters and groundwater do not 짐ways hold to the redox predictions as well as low pH AMD samples. The oxidation and precipitation of oxyhydroxides depletes iron from some systems, and this also affects arsenite and arsenate concentrations differently through sorption processes.

  • PDF

Research Trends and Prospects of Reverse Electrodialysis Membranes (역전기투석용 이온교환막의 연구동향 및 전망)

  • Hwang, Jin Pyo;Lee, Chang Hyun;Jeong, Yeon Tae
    • Membrane Journal
    • /
    • v.27 no.2
    • /
    • pp.109-120
    • /
    • 2017
  • The reverse electrodialysis (RED) is an energy generation system to convert chemical potential of saline water directly into electric energy via the combination of current derived from a redox couple electrolyte and ionic potential obtained when cation ($Na^+$) and anion ($Cl^-$) pass through cation exchange membrane (CEM) and anion exchange membrane (AEM) into fresh water, respectively. Ion exchange membrane, a key element of RED system, should satisfy requirements such as 1) low swelling behavior, 2) a certain level of ion exchange capacity, 3) high ion conductivity, and 4) high perm-selectivity to achieve high power density. In this paper, research trends and prospects of ionomer materials and ion exchange membranes are dealt with.

Studies on the Electrochemical Properties for Rancidity of Linoleic Acid (리놀산의 산패에 대한 전기화학적 특성 연구)

  • 김우성;이송주
    • The Korean Journal of Food And Nutrition
    • /
    • v.13 no.4
    • /
    • pp.360-364
    • /
    • 2000
  • We studied the degree of rancidity of linoleic acid for the electrochemical redox reaction in time course and the kinetic parameters. The current of the linoleic acid was increased and the potential was shifted to the positive potential when scan rates were faster. The redox reaction of the linoleic acid was proceeding to totally irreversible and diffusion controlled reaction. From these results, diffusion coefficient(D$\_$o/) of linoleic acid was observed to 2.61$\times$10$\^$-6/ ㎠/s in the 0.1 M TEAP/DMF electrolyte solution. Also, exchange rate constant(K$\^$o/) was observed to 9.79$\times$10$\^$-11/ cm/s. The leaving time in air condition was found to affect the rancidity. We predicted that the product was carbonyl compounds.

  • PDF

Fermentation Properties of Dongchimi added Maesil(Prunus mume) (매실 첨가물에 따른 동치미의 발효 특성)

  • Park Bock-Hee;Cho Hee-Sook
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.14 no.6
    • /
    • pp.582-590
    • /
    • 2004
  • The purpose of this study was to investigate the effect of maesil(Prunus mume) on Dongchimi fermentation. Dongchimi with 0, 2, 4 and 6%(w/v) maesil was fermented at 10℃ for 45 days. The pH of Dongchimi decreased slowly in all samples during fermentation. Total acidity of Dongchimi increased gradually during fermentation and total acidity of Dongchimi with maesil was higher than that of control. Redox potentials decreased until 30 days of fermentation but increased thereafter. Reducing sugar content increased in the initial stage of the fermentation periods, and then it decreased gradually, the reducing sugar content of Dongchimi with maesil was higher than that of control. The content of total vitamin C was much higher in Dongchimi with maesil. In color measurement, lightness value decreased gradually, redness and yellowness values increased gradually during fermentation but decreased thereafter. The content of hot water soluble pectin(HWSP) decreased as the fermentation proceeded but the content of hydrochloric acid soluble pectin(HCISP) and sodium hexametaphosphate soluble pectin(NaSP) increased.

  • PDF

Optical and Electrochemical Property of Self-Assembled Monolayers Containing Viologen Derivative by EQCM Study (EQCM법을 이용한 자기조립된 Viologen 유도체의 광학적 특성 및 전기화학적 특성 연구)

  • Lee, Dong-Yun;Park, Sang-Hyun;Park, Jae-Chul;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1305-1306
    • /
    • 2006
  • A monolayer assembly of anthracene-viologen linked thiol ($AMVC_{8}SH$) was fabricated on a gold electrode by self-assembly method. Structural property of the self-assembled monolayers (SAMs) was carried out by optical and electrochemical method. Firstly, we investigated PL spectrum and UV/visible absorption for the optical properties in solution state. Secondly, we determined the characteristics of charge transfer in different electrolyte solutions by electrochemical quartz crystal microbalance (EQCM). From the data, the PL spectrum and UV/visible absorption were observed and the well-defined shape peaks were nearly equal charges during redox reactions and existed to an excellent linear relationship between the scan rates and existed to currents. The mass change was determined during redox reaction. The mass change behavior of SAMs was not only governed by the mobility of the ion in the viologen but the valence of the ion in the electrolyte solution.

  • PDF

Temperature-Dependent Redox Isomerism via Intramolecular Electron Transfer. Synthesis and Properties of Co(dmppz)₂(3,6-dbq)₂ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone)

  • 정옥상;조두환;박성호;손윤수
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.6
    • /
    • pp.628-631
    • /
    • 1997
  • The preparation and characterization of $Co(dmppz)_2(3,6-dbq)_2$ (dmppz=1,4-dimethylpiperazine; 3,6-dbq=3,6-di-tert-butyl-1,2-quinone) are established. Temperature-dependent magnetic moments (100-400 K), variable-temperature IR, and electronic spectra are presented to show that the title complex exhibits an equilibrium via a catechol to cobalt intramolecular electron transfer. At temperatures below 350 K, the charge distribution of the complex is $Co^Ⅲ(dmppz)_2(3,6-dbsq)(3,6-dbcat)$ (3,6-dbsq=3,6-di-tert-butyl-1,2-semiquinonato; 3,6-dbcat=3,6-di-tert-butylcatecholato) whereas at the temperature beyond 390 K, the complex is predominantly Co^Ⅱ(dmppz)_2(3,6-dbsq)_2$ form in the solid state. At the temperature range of 350-390 K a mixture of Co(Ⅲ) and Co(Ⅱ) redox isomers exist at equilibrium. The transition temperature (Tc) of Co(Ⅲ)/Co(Ⅱ) in solution is approximately 50° lower than that in the solid state. In particular, thermal analysis on solid sample of the complex discloses that the transition for the Co(Ⅲ)/Co(Ⅱ) is accompanied by the change in heat content of 12.30 kcal/mol.

Recent Advance on Composite Membrane Based Vanadium Redox Flow Battery (복합막 기반 바나듐 레독스 흐름 전지의 최근 발전)

  • Kyobin Yoo;Rajkumar Patel
    • Membrane Journal
    • /
    • v.33 no.5
    • /
    • pp.233-239
    • /
    • 2023
  • The transport properties of membranes used in vanadium redox flow batteries (VRFB) are fundamental in battery performance. High proton conductivity and low vanadium ion permeability must be achieved to achieve high battery performance. However, there is a trade-off relationship between proton conductivity and vanadium ion permeability. So, solving this trade-off relationship is crucial in VRFB development. Also, maintaining high coulombic efficiency, voltage efficiency, and energy efficiency is essential for high-performing VRFB. Recently, various attempts have been made, primarily on composite membranes and SPEEK membranes, to overcome the existing limit of Nafion membranes. VRFB is an essential class of rechargeable battery in composite membranes reviewed here.

Synthesis of ZnO nanoparticles and their photocatalytic activity under UV light

  • Nam, Sang-Hun;Kim, Myeong-Hwa;Bu, Jin-Hyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.423-423
    • /
    • 2011
  • Zinc oxide is metal oxide semiconductor with the 3.37 eV bandgap energy. Zinc oxide is very attractive materials for many application fields. Zinc Oxide has many advantages such as high conductivity and good transmittance in visible region. Also it is cheaper than other semiconductor materials such as indium tin oxide (ITO). Therefore, ZnO is alternative material for ITO. ZnO is attracting attention for its application to transparent conductive oxide (TCO) films, surface acoustic wave (SAW), films bulk acoustic resonator (FBAR), piezoelectric materials, gas-sensing, solar cells and photocatalyst. In this study, we synthesized ZnO nanoparticles and defined their physical and chemical properties. Also we studied about the application of ZnO nanoparticles as a photocatalyst and try to find a enhancement photocatalytic activity of ZnO nanorticles.. We synthesized ZnO nanoparticles using spray-pyrolysis method and defined the physical and optical properties of ZnO nanoparticles in experiment I. When the ZnO are exposed to UV light, reduction and oxidation (REDOX) reaction will occur on the ZnO surface and generate O2- and OH radicals. These powerful oxidizing agents are proven to be effective in decomposition of the harmful organic materials and convert them into CO2 and H2O. Therefore, we investigated that the photocatalytic activity was increased through the surface modification of synthesized ZnO nanoparticles. In experiment II, we studied on the stability of ZnO nanoparticles in water. It is well known that ZnO is unstable in water in comparison with TiO2. Zn(OH)2 was formed at the ZnO surface and ZnO become inactive as a photocatalyst when ZnO is present in the solution. Therefore, we prepared synthesized ZnO nanoparticles that were immersed in the water and dried in the oven. After that, we measured photocatalytic activities of prepared samples and find the cause of their photocatalytic activity changes.

  • PDF

Graphene Oxide (GO) Layered Structure Ion Exchange Membrane Application for Vanadium Redox Flow Battery (VRB) System Study (산화그라핀 (Graphene Oxide, GO)이 코팅된 양이온 교환막을 용한 바나듐 레독스 흐름 전지 (Vanadium Redox Flow attery, VRB) 시스템에 관한 연구)

  • Lee, Kwan Ju;Chu, Young Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.2
    • /
    • pp.94-102
    • /
    • 2014
  • Cation exchange membrane (Nafion) was modified to reduce the vanadium ion permeation through the membrane and to increase the vanadium redox flow battery (VRB) system performance by coating the graphene oxide (GO) which has nano-plate like morphology. Modified membrane properties were studied by measuring the ion exchange capacity (I.E.C), water uptake and proton conductivity. The thickness of the coated layer on the surface of the Nafion membrane was observed as $0.93{\mu}m$ by SEM. Proton conductivity and vanadium ion permeability of the modified membrane were decreased to 27% and 25% compared to that of the commercial Nafion membrane respectively. VRB single cell performance test was performed to compare the system performance of the VRB applied with commercial Nafion membrane and modified membrane. VRB system applied with modified membrane showed higher coulombic efficiency and energy efficiency than the VRB system applied with the commercial Nafion membrane due to the reduction of the vanadium ion permeation. From these result, we could suggest that the membrane modification by coating the GO on the surface of the Nafion membrane could be one of the promising strategies to reduce the vanadium ion permeation and to increase the VRB system performance effectively.