• Title/Summary/Keyword: redox properties.

Search Result 303, Processing Time 0.172 seconds

Relationship between Concentration and Performance of Supporting Electrolyte of Redox Flow Battery Using Polyoxometalate (Polyoxometalate를 이용한 레독스 흐름전지의 지지 전해질 농도와 성능의 관계)

  • Yong Jin Cho;Byeong Wan Kwon
    • Applied Chemistry for Engineering
    • /
    • v.34 no.2
    • /
    • pp.175-179
    • /
    • 2023
  • Herein we present a tested aqueous based redox flow battery (RFB) that employs phosphomolybdic acid and ferrocyanide as the negative and positive active species in an aqueous sodium hydroxide solution. The different concentrations of NaOH solution, such as 1.0, 1.2, 1.4, 1.5, and 1.6 M, were prepared for checking the electrochemical properties and stability. The NaOH concentration as a supporting electrolyte in the negative species appears to play an important role in the electrochemical properties of phosphomolybdic acid. Moreover, the optimum value of the concentration is necessary for the best performance. The resistance of the electrolyte decreased with increasing the concentration up to 1.5 M and then increased to 1.6 M. Hence, the decrease in electrolyte resistance appears to greatly influence the energy efficiency, which is improved by increasing the concentration of NaOH. In addition, the 1.5 M NaOH solution appears to be the concentration required for optimum performance.

Addition Effects of Sheet-like Ni Nanopowder on the Electrochemical Properties of Positive Electrode in Ni-Zn Redox Flow Battery (Ni-Zn 레독스 플로우 전지에 있어서 양극의 전기화학적 특성에 미치는 쉬트 형상의 Ni 나노분말 첨가 효과)

  • Seok, Hye-Won;Kim, Sei-Ki;Kang, Yang-Koo;Hong, Yeon-Woo;Lee, Young-Jin;Kim, Beom-Su;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.9
    • /
    • pp.582-588
    • /
    • 2014
  • 3 mol% Co-added $Ni(OH)_2$ fine powders, which showed ${\beta}$-phase, as positive electrode materials have been fabricated using $NiSO_4{\cdot}6H_2O$ aqueous solution by ultrasonic spray-chemical precipitation and subsequent hydrothermal method, and sheet-like Ni nanopowder was fabricated by mechano-chemical reduction method. The addition effects of the sheet-like Ni nanopowder on the electrochemical properties of the positive electrode in Ni-Zn Redox flow battery were investigated. Impedance spectroscopy revealed that the addition of the sheet-like Ni nanopowder resulted in decrease in the electrical resistivity; 10 wt.% addition reduced the electrical properties by a fifth. Cyclic voltammetry showed the addition of the sheet-like Ni nanopowder resulted in decrease in the potential difference of oxidation and reduction; this means the increase in the reversability for electrode reduction. Charge/discharge measurement confirmed that the addition of the sheet-like Ni nanopowder resulted in the increase in the discharge efficiency.

Photophysical Properties of a Conjugated Poly(1-dodecyl-2,5-pyrrylene vinylene)

  • Park, Chang-Shik;Kim, In-Tae;Lee, Sang-Woo;Lee, Ha-Hyeong;Lee, Young-Nam;Jeon, Ki-Seok;Lee, Ki-Hwan;Sung, Nack-Do;Kil, Mun-Jae
    • Macromolecular Research
    • /
    • v.12 no.3
    • /
    • pp.322-324
    • /
    • 2004
  • Poly(1-dodecyl-2,5-pyrrylene vinylene) (PDPV) has an extended 1t-conjugated structure and exhibits characteristic spectroscopic features. The PDPV we prepared has an absorption maximum at 510nm and its long absorption tail at ca. 750nm in methylene chloride is due to the long 1t-conjugated system connected to vinyl group. The large red-shift of emission was 625nm upon excitation at 480nm, which suggests the existence of a low emissive state. The emission of PDPV in less-polar solvents decreased markedly relative to that in the more-polar solvents; this observation was ascribed possibly to quenching by a strong vibrational mode of the dodecyl groups of PDPV in less-polar solvents. Furthermore, the emission from the high-energy side had a single decay component (0.1㎱, 49.96%), while that from the low-energy side had two components (0.6㎱, 27.1 %; 2.7㎱, 22.87%). We characterized the redox properties of PDPV by cyclic voltammetry. Every redox peak showed irreversible behavior; the oxidation peaks appeared at 1.7,0.8, and 0.6V and the reduction peak at -0.5V.

The Effect of Oxygen in Low Temperature SCR over Mn/$TiO_2$ Catalyst (Mn/$TiO_2$ 촉매를 이용한 저온 SCR 반응에서 산소의 영향)

  • Lee, Sang Moon;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.119-123
    • /
    • 2012
  • This study presents the effect of oxygen on the $NH_3$ selective catalytic reduction (SCR) by Mn/$TiO_2$ catalyst. The lattice oxygen of catalysts is participate in the low temperature SCR, and the gaseous oxygen directly takes part in the rexoidtion of reduced catalyst. These redox properties of oxygen an play important role in SCR activity and the available capability of lattice oxygen depends on the manganese oxidation state of the catalyst surface. $MnO_2$ species has a higher redox property than that of $Mn_2O_3$ species on deposited $TiO_2$ surface and these manganese oxide states strongly depend on the $TiO_2$ surface area.

Optimal Porous Structure of MnO2/C Composites for Supercapacitors

  • Iwamura, Shinichiroh;Umezu, Ryotaro;Onishi, Kenta;Mukai, Shin R.
    • Korean Journal of Materials Research
    • /
    • v.31 no.3
    • /
    • pp.115-121
    • /
    • 2021
  • MnO2 can be potentially utilized as an electrode material for redox capacitors. The deposition of MnO2 with poor electrical conductivity onto porous carbons supplies them with additional conductive paths; as a result, the capacitance of the electrical double layer formed on the porous carbon surface can be utilized together with the redox capacitance of MnO2. However, the obtained composites are not generally suitable for industrial production because they require the use of expensive porous carbons and/or inefficient fabrication methods. Thus, to develop an effective preparation procedure of the composite, a suitable structure of porous carbons must be determined. In this study, MnO2/C composites have been prepared from activated carbon gels with various pore sizes, and their electrical properties are investigated via cyclic voltammetry. In particular, mesoporous carbons with a pore size of around 20 nm form a composite with a relatively low capacitance (98 F/g-composite) and poor rate performance despite the moderate redox capacitance obtained for MnO2 (313 F/g-MnO2). On the other hand, using macro-porous carbons with a pore size of around 60 nm increases the MnO2 redox capacitance (399 F/g-MnO2) as well as the capacitance and rate performance of the entire material (203 F/g-composite). The obtained results can be used in the industrial manufacturing of MnO2/C composites for supercapacitor electrodes from the commercially available porous carbons.

Electrochemical Properties of Current Collector in the All-vanadium Redox Flow Battery (바나듐 레독스-흐름 전지에서 집전체의 전기화학적 특성)

  • Hwang, Gan-Jin;Oh, Yong-Hwan;Ryu, Cheol-Hwi;Choi, Ho-Sang
    • Korean Chemical Engineering Research
    • /
    • v.52 no.2
    • /
    • pp.182-186
    • /
    • 2014
  • Two commercial carbon plates were evaluated as a current collector (bipolar plate) in the all vanadium redox-flow battery (V-RFB). The performance properties of V-RFB were test in the current density of $60mA/cm^2$. The electromotive forces (OCV at SOC 100%) of V-RFB using A and B current collector were 1.47 V and 1.54 V. The cell resistance of V-RFB using A current collector was $4.44{\sim}5.00{\Omega}{\cdot}cm^2$ and $3.28{\sim}3.75{\Omega}{\cdot}cm^2$ for charge and discharge, respectively. The cell resistance of V-RFB using B current collector was $4.19{\sim}4.42{\Omega}{\cdot}cm^2$ and $4.71{\sim}5.49{\Omega}{\cdot}cm^2$ for charge and discharge, respectively. The performance of V-RFB using each current collector was evaluated. The performance of V-RFB using A current collector was 93.1%, 76.8% and 71.4% for average current efficiency, average voltage efficiency and average energy efficiency, respectively. The performance of V-RFB using B current collector was 96.4%, 73.6% and 71.0% for average current efficiency, average voltage efficiency and average energy efficiency, respectively.

Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application

  • Park, Min-A;Shim, Joonmok;Park, Se-Kook;Jeon, Jae-Deok;Jin, Chang-Soo;Lee, Ki Bong;Shin, Kyoung-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1651-1655
    • /
    • 2013
  • Anion exchange membranes for a vanadium redox flow battery (VRB) were prepared by pore-filling on a PE substrate with the copolymerization of vinylbenzyl chloride (VBC) and glycidyl methacrylate (GMA). The ion exchange capacity, water uptake and weight gain ratio were increased with a similar tendency up to 65% of GMA content, indicating that the monomer improved the pore-filling degree and membrane properties. The vanadium ion permeability and open-circuit voltage were also investigated. The permeability of the VG65 membrane was only $1.23{\times}10^{-7}\;cm^2\;min^{-1}$ compared to $17.9{\times}10^{-7}\;cm^2\;min^{-1}$ for Nafion 117 and $1.8{\times}10^{-7}\;cm^2\;min^{-1}$ for AMV. Consequently, a VRB single cell using the prepared membrane showed higher energy efficiency (over 80%) of up to 100 cycles compared to the commercial membranes, Nafion 117 (ca. 58%) and AMV (ca. 70%).

Studies on the Cosmetic Analysis based upon Oxidation Reduction Reactions (산화환원 반응을 이용한 화장품 분석에 관한 연구)

  • Kim, Young-So;Kim, Boo-Min;Park, Sang-Chul;Park, Jeong-Eun;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.1 s.60
    • /
    • pp.11-15
    • /
    • 2007
  • Oxidation/reduction titrations are important quantitative procedures for many chemicals. Several widely used analytical methods for cosmetic ingredients are based on the redox reactions. In this article, we summarized basic theories of redox titration and applications. Determination of unsaturation properties based on iodine or bromine number, quantitation of hydrogen peroxide or peroxide materials in several cosmetic ingredients and measurement of titanium dioxide, widely used sunscreen agent, in cosmetics are discussed here.

Study on Current Collector for All Vanadium Redox Flow Battery (전바나듐계 레독스플로우전지용 집전체에 대한 연구)

  • Choi, Ho-Sang;Hwang, Gab-Jin;Kim, Jae-Chul;Ryu, Cheol-Hwi
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.2
    • /
    • pp.240-248
    • /
    • 2011
  • All-vanadium redox flow battery (VRFB) has been studied actively as one of the most promising electrochemical energy storage systems for a wide range of applications such as electric vehicles, photovoltaic arrays, and excess power generated by electric power plants at night time. Among consisting elements of the VRFB, the ion exchange membrane and the electrode play important roles. In this study, carbon PVC coposite sheets for the VRFB have been developed and electrochemical characteristics investigated. Current collector for VRFB, carbon PVC composite sheets (CPCS), were prepared with G-1028 as a conducting particle, PVC as a polymer, Dibutyl phthalate (DBP) as a plasticizer and fumed Silica (FS) as a dispersion agent. CPCS has been shown to have the characteristics as an excellent current collector for VRFB and electrochemical properties of specific resistivity 0.31 ${\Omega}cm$, which were composed of G-1028 80 wt%, PVC 10 wt%, DBP 5 wt% and FS 5 wt%.