• 제목/요약/키워드: redox potentials

검색결과 86건 처리시간 0.028초

플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석 (Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries)

  • 김민경;이동휘;여찬규;최수연;최치원;윤현민
    • 한국분말재료학회지
    • /
    • 제30권6호
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

NMR Studies on Ferrocytochrome $C_3$ and its Interaction with Ferredoxin I

  • Kim, Andre;Park, Jang-Su
    • 한국자기공명학회논문지
    • /
    • 제3권1호
    • /
    • pp.12-26
    • /
    • 1999
  • The 1H NMR signals of the heme methyl, propionate and related chemical groups of cytochrome C3 from Desulfovibrio vulgaris Miyazaki F (D.v. MF) were assigned by means of 1D NOE, 2D DQFCOSY and 2D TOCSY spectra. They were consistent with the assignments of the hemes with the highest and second-lowest redox potentials reported by Gayda et al. [Reference: 15]. The heme assignments were also supported by NOE between the methyl groups of these hemes and the side chain of Val-18, All the results contradicted the heme assignments for D.v. MF cytochrome C3 made on the basis of NMR [Reference: 11]. Based on these assignments, the interaction of cytochrome C3 with ferredoxin I was investigated by NMR. The major interaction site of cytochrome C3 was identified as the heme with the highest redox potential, which is surrounded by the highest density of positive charges. The stoichiometry and association constant were two cytochrome C3 molecules per monomer of ferredoxin I and 108 M-2 (at 53 mM ionic strength and $25^{\circ}C$), respectively.

  • PDF

Fabrication of Hemoglobin/Silver Nanoparticle Heterolayer for Electrochemical Signal-enhanced Bioelectronic Application

  • Lee, Taek;Yoon, Jinho;Choi, Jeong-Woo
    • Korean Chemical Engineering Research
    • /
    • 제55권4호
    • /
    • pp.556-560
    • /
    • 2017
  • A hemoglobin/silver nanoparticle heterolayer was fabricated for bioelectronic device with electrochemical signal-enhancement effect. As a device element, a hemoglobin, the metalloprotein, contained the heme group that showed the redox property was introduced for charge storage element. For electron transfer facilitation, a silver nanoparticle was introduced for electrochemical signal facilitation, the hemoglobin was immobilized onto Au substrate using chemical linker 6-mercaptohexanoic acid (6-MHA). Then, the silver nanoparticle was immobilized onto fabricated hemoglobin/6-MHA heterolayers by layer-by-layer (LbL) method. The surface morphology and surface roughness of fabricated heterolayer were investigated by atomic force microscopy (AFM). The redox property of hemoglobin/silver nanoparticle heterolayer was investigated by a cyclic voltammetry (CV) experiment for obtaining an oxidation potential and reduction potential. Moreover, for the assessing charge storage function, a chronoamperometry (CA) experiment was conducted to hemoglobin/silver nanoparticle-modified heterolayer electrode using oxidation and reduction potentials, respectively. Based on the results, the fabricated hemoglobin/silver nanoparticle heterolayer showed that an increased charge storage effect compared to hemoglobin monolayer-modified electrode.

Elucidation of Electrode Reaction of EuCl3 in LiCl-KCl Eutectic Melts through CV Curve Analysis

  • Kim, Tack-Jin;Jung, Yong-Ju;Kim, Si-Hyung;Paek, Seung-Woo;Ahn, Do-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.863-866
    • /
    • 2011
  • The electrode reaction of $Eu^{3+}$ in a LiCl-KCl eutectic melt has been re-examined using cyclic voltammetry (CV). In this work, for the first time, the kinetic details of a $Eu^{3+}/Eu^{2+}$ redox system have been completely elucidated, along with the thermodynamic property, through a curve fitting applied to experimental CV data, which were obtained in a wide scan rate range of 0.5 to 10 V/s. The simulated results showed an excellent fit to all experimental CV data simultaneously, even though the curve fittings were performed within a large dynamic range of initial transfer coefficient values, formal potentials, and standard rate constants. As a result, a proper formal potential, transfer coefficient, and standard rate constant for the $Eu^{3+}/Eu^{2+}$ redox system were successfully extracted using the CV curve fitting.

Channel Electrode Voltammetric and In Situ Electrochemical ESR Studies of Comproportionation of Methyl Viologen in Acetonitrile

  • 이지우
    • Bulletin of the Korean Chemical Society
    • /
    • 제17권2호
    • /
    • pp.162-167
    • /
    • 1996
  • Two redox processes of methyl viologen (+2/+, +/0) in acetonitrile were investigated by using channel electrode voltammetric and in situ electrochemical ESR methods. Two separated unequal plateau currents of the first (+2/+) and second (+/0) redox processes of the viologen were observed in the channel electrode voltammograms and showed a cube-root depedndence on the electrolyte flow rate, respectively. The simple Levich analysis resulted in two different diffusion coefficients of $D_{+2}=2.2{\times}10^{-5}\;cm^2/s$ and $D_+=3.0{\times}10^{-5}cm^2/s$ from the limiting currents. In situ electrochemical ESR studies were performed for the monocation radicals generated at the potentials of the two plateau currents in the electrolyte flow range $1.3{\times}10^{-1}{\geq}v_f{\geq}2.7{\times}10^{-3}\;cm^3/s$. Backward implicitfinite difference method was employed to simulate the electrochemical kinetic problem of two sequential electron transfers ($MV^{+2}+e{\leftrightarrows}MV^+,\;MV^{+}+e{\leftrightarrows}MV^0$) coupled with reversible comproportionation ($MV^{2+}+MV^0{{\leftrightarrows}^{k_f}_{k_b}}2MV^+$). $k_f$ was found to be greater than ($10^6M^{-1}s^{-1}.

순환전압전류법과 일정전류전위차법을 이용한 PBD와 PVK의 이온화에너지, 전자친화도 및 전기화학적 특성에 관한 연구 (Study on The lonzation Potential, Electron Affinity and Electrochemical Property of PBO and PVK using Cyclic Voltammetry and Constant Current Potentiometry)

  • 형경우;최돈수
    • 한국전기전자재료학회논문지
    • /
    • 제16권12S호
    • /
    • pp.1273-1277
    • /
    • 2003
  • The effects of molecular structure on the redox properties are explored by the cyclic voltammetry, constant current potentiometry and spectroscopy using the thin films of organic electroluminescence materials of Poly(N-vinylcarbazole); PVK and 2- (4'-tert-butylphenyl) -5-(4"-bisphenyl) -1,3,4-oxadiazole; PBD. The UV/visible absorption maxima and band gap (E$\_$g/) show at 310nm (4.00eV) and 368nm (3.37eV) for FBD, 344nm (3.60eV) and 356nm (3.48eV) for PVK, respectively. The measured electrochemical ionization potential (IP) and electron affinity (EA) of these materials we 5.87 and 2.82eV for PBD, 5.80 and 3.17eV for PVK, respectively. The electrical band gaps are 3.05eV for PBD and 2.78eV for PVK, respectively. The electrical hole gap and electron gap with respect to the first rising potentials and the inflection potentials are obtained to be 0.39V and 0.41V for PBD, 0.25V and 0.28V for FVK, respectively.

Synthesis and Characterization of Ir(H)(CO)(PEt3})22-C60)

  • Lee, Chang-Yeon;Lee, Gae-Hang;Kang, Hong-Kyu;Park, Bo-Keun;Park, Joon-T.
    • Bulletin of the Korean Chemical Society
    • /
    • 제28권11호
    • /
    • pp.1958-1962
    • /
    • 2007
  • The title complex, Ir(H)(CO)(PEt3)2(η 2-C60) (2), has been prepared by the reaction of excess C60 (4 equiv) with a tetrairidium complex Ir4(CO)8(PEt3)4 (1) in refluxing chlorobenzene in 40% yield as green crystals. Compound 2 has been characterized by cyclic voltammetry (CV), spectroscopic methods (mass, IR, 1H and 31P NMR), and a single crystal X-ray diffraction study. The molecular structure reveals that the iridium atom of 2 is coordinated by two axial ligands of a hydrogen atom and a carbonyl group, and three equatorial ligands of two phosphorus atoms and an η 2-C60 moiety. The CV study exhibits three reversible one-electron redox waves for the successive reductions of 2, together with additional four redox waves due to free C60 reductions, which was formed by decomposition of 2 in the reduced states. The three reversible redox waves of 2 are shifted to more negative potentials by ca. 270 mV compared to free C60, reflecting both metal-to-C60 π-back-donation and the electron-donating nature of the two phosphorus ligands.

Synthesis, Characterization, and Crystal Structures of Iron(Ⅱ) and Manganese(II) Complexes with 4,7-bis(2-pyridylmethyl)-1-thia-4,7-diazacyclononane

  • Delong Zhang;Daryle H. Busch;Nathaniel W. Alcock
    • Bulletin of the Korean Chemical Society
    • /
    • 제19권9호
    • /
    • pp.897-906
    • /
    • 1998
  • A new synthesis has been developed for 1-thia-4,7-diazacyclononane and the complexation behavior of a particular derivative has been explored. The pentadentate ligand 4,7-bis(2-pyridylmethyl)-l-thia-4,7-diazacyclononane ([9]$N_2SPY_2$) and its iron(Ⅱ) and manganese(Ⅱ) complexes were prepared and characterized. Magnetic moments of 5.17 and 5.90 μB respectively, indicate that the iron(Ⅱ) and manganese(Ⅱ) complexes are high spin. Charge transfer transitions (d-π*) occur for [Fe(Ⅱ)([9]$N_2SPY_2)(X)]^{n+}$at 27027, 25000, and 24390 cm-1 for X=$H_2O$, Cl-, and OH-, respectively. In acetonitrile solution, the cyclic voltammogram of the manganese(Ⅱ) complex exhibits a redox couple at 0.92 V vs. NHE while the redox potentials for [Fe(Il)([9]$N_2SPY_2)(X)]^{n+}$ are 0.70, 0.66, and 0.37 V vs. NHE for X=$H_2O$, Cl-, and OH-, respectively. The d-π* charge transfer energy and Fe(Ⅱ)/Fe(Ⅲ) redox potential for [Fe(Ⅱ)([9]$N_2SPY_2)(X)]^{n+}$ increase in the same order: $H_2O>Cl^- >OH^-$. The crystal structures of the iron(Ⅱ) and manganese(Ⅱ) complexes reveal that the metal ions are sixcoordinate, binding to four nitrogen atoms and a sulfur atom from the pentadentate ligand, as well as a chloride anion, with the chloride and sulfur atoms in cis positions. The two metals have similar coordination geometries, which are closer to trigonal prismatic than octahedral. In both iron and manganese complexes, the M-N($sp_3$) trans to Cl- is 0.07 Å longer than the one cis to Cl- , and M-N($sp^2$) trans to S is 0.05 longer than the one cis to S atom.

High sensitivity biosensor for mycotoxin detection based on conducting polymer supported electrochemically polymerized biopolymers

  • Dhayal, Marshal;Park, Gye-Choon;Park, Kyung-Hee;Gu, Hal-Bon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 춘계학술대회 초록집
    • /
    • pp.243.1-243.1
    • /
    • 2010
  • Devices based on nanomaterials platforms are emerging as a powerful tool for ultrasensitive sensors for the direct detection of biological and chemical species. In this talk, we will report the preparation and the full characterization of electrochemical polymerization of biopolymers platforms and nano-structure formation for electrochemical detection of enzymatic activity and toxic compound in electrolyte for biosensor applications. Formation of an electroactive polymer film of two different compounds has been quantified by observing new redox peak at higher potentials in cyclic voltammogram measurements. RCT value of at various biopolymer concentration based hybrid films has been obtained from electrochemical impedance spectroscopy analysis and possible mechanism for formation of complexes during electrochemical polymerization on conducting substrates has been investigated. Biosensors developed based on these hybrid biopolymers have very high sensitivity.

  • PDF

Heme proton resonances assignments based on nuclear Overhauser effect

  • Li, Chun-Ri;Kim, So-Sun;Lu, Ming;Park, Jang-Su
    • 한국자기공명학회논문지
    • /
    • 제11권1호
    • /
    • pp.48-55
    • /
    • 2007
  • NMR signals of two hemes were assigned to particular hemes in the crystal structures by nuclear Overhauser effect experiments. The results showed that the hemes with the highest and lowest redox potentials in the one-electron reduction process correspond to the hemes I and IV in the crystal structure.

  • PDF