• Title/Summary/Keyword: red-tide depression

Search Result 3, Processing Time 0.017 seconds

Removal and Growth Inhibition of Red-tide Organisms by Blue-Min Treatment (블루민의 적조생물 제거와 생장저해능)

  • Gwak, Seung-Kuk;Jung, Min-Kyung;Lee, Eun-Ki;Cho, Kyung-Je
    • ALGAE
    • /
    • v.19 no.1
    • /
    • pp.7-14
    • /
    • 2004
  • Blue-Min was initially developed as an adsorbent for harmful gas removal and recently improved to apply to livestock, agriculture and aquaculture as an assistant feed. In the Blue-Min treatment, growth of harmful algae (Cochlodinium polykrikoides and the others causing the red-tide in the ocean) were inhibited below 10% in comparison with control and coagulation removal of harmful alge with Blue-Min treatment was more efficient than that of yellow loess treatment. It would be expected that the Ble-Min can be useful for the extirpator against the red-tide organisms and restrain the toxic algal growth around the fish aquaculture using the assistant feed. Recently, its utility has become to be diverse as it was revealed that aquaculture productivity increase by its application and, in addition, that it improve the water quality or sediment conditions in the aquaculture of Chinese White Shrimp. When Blue-Min was treated with the proper dose, the growth inhibition of Microcystis aeruginosa and lsochrysis galbana, which are typical red-tide organisms in freshwaters and food organisms in aquaculture, respectively, were less than that of marine red-tide organisms, while their growth slightly increased with low concentration treatiment. In addition, polyunsaturated fatty acids (PUFA) content of I. galbana slightly increase with the Blue-Min treatment. Through our research, the Blue-Min has diverse and comples function against various biological organisms and is proved as a biological activator or depressor.

MASS MORTALITYS OF OYSTER DUE TO RED TIDE IN JINHAE BAY IN 1978 (1978년 진해만 적조와 양식굴의 대량폐사)

  • CHO Chang Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 1979
  • In early August 1978, a huge red tide occurred off Chilcheon Is, , at the mouth of Jinhae Bay. It expanded rapidly into the central part and then soon covered all the bay except the innermost part of the bay. After staying for a week it disappeared, and thereafter several small scale red tides partially occurred and disappeared untill the end of August. It differed from the red tides hitherto recorded from this bay in respect of the dominant plankter, the geographical extent and the severe damaging effect to local oyster resources. During the red tide period, nevertheless, no oyster damage was found. In September, however, oyster mortailty was found from all rafts and longlines in the bay. Except the inner most part of the bay the oyster farms were completely destroyed. Of the oyster Production in the winter 1978, $96\%$ of an estimated yield of 5,879 tons (shucked meat) was lost and it was estimated to be 2,275 million won, equivalent to $US\$$ 4.55 million. The dominant species was a dinoflagellate, Ceratium fusus and it constituted about $45\%$ of the total phytoplankton. Cell count showed $7.0\times10^4\;cells/\iota$ and chlorophyll-a, $50mg/m^3$ during red tide peak. No oxygen was found ill the bottom waters in September. Sulphides in bottom waters and in the superficial mud increased to 15 and 8-fold respectively in September compared with July ana August. Precipitation from January to May of 1978 was about a third in comparison with the past ten years average but rainfall ill June was two and half-fold more than normal year, and thereafter drought persisited till September Air and water temperatures were also higher, and sunny days continued for a long time without strong winds. Therefore, water was calm for a long time after the red tide extinguished. The result indicated that the occurrence of the Ceratium red tide occurred in that year which was characterized by the combination of the formation of almost anoxic bottom water before the red tide occurrence, high air temperature and the calmness after a great quantity of rainfall in June. The mass mortality of oysters was presumed not to be directly related with the red tide but with the depression of dissolved oxygen in the environmental waters at the bottom due to settling of the red tide organisms.

  • PDF

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.