• Title/Summary/Keyword: red pepper leaf

Search Result 127, Processing Time 0.024 seconds

Differential Growth Response and Gene Expression in Relation to Capsidiol Biosynthesis of Red Pepper Plant and Cultured Cells by γ-Ray and UV Stress (방사선과 자외선에 대한 고추 식물체 및 배양세포의 생장반응과 Capsidiol 생합성 유전자의 발현 차이)

  • An, Jung-Hee;Kim, Jae-Sung;Jeong, Jeong-Hag;Oh, Sei-Myoung;Kwon, Soon-Tae
    • Journal of Plant Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.201-206
    • /
    • 2003
  • Differential responses of red pepper plant and cultured cells to enhanced ${\gamma}$-ray($^{60}$ Co) and ultraviolet(UV) stress were investigated. In seed treatment, 1 Gy of ${\gamma}$-ray increased seedling dry weight up to 19.1%, but 50 Gy treatment markedly ingibited seed germination and subsequent growth of seedling. UV treatment to seed did not change the germination ability of seeds and the growth of seedlings regardless of duration of UV treatment until 24 hrs. In case of UV treatment to seedlings, plant injury was seriously progressed even after the seedlings were returned to no UV condition, and eventually all the leaves showed chlorosis by the stress. However, progress of plant injury by ${\gamma}$-ray stress slower than that caused by UV stress, and even at the high dose of ${\gamma}$-ray 50 Gy, did not caused the cholrosis of stressed plant leaf. Amount of electrolytes leakage from plant leaf by UV treatment for 24hrs was increased up to 28.8 folds in comparison with untreated control, whereas that of 50 Gy of ${\gamma}$-ray was increased only 1.2 folds. UV stress induced the production of capsidiol, antimicrobial phytoalexin, by activation of gene expression involved in capsidiol biosynthesis, such as sesquiterpene cyclase and cyclase and cytochrome P450 hydroxylase in the leaf and cultured cell, but ${\gamma}$-ray stress induced neither the production of capsidiol nor expression of the genes.

Growth response and flowering of red pepper plants at different temperature and fertilized conditions (온도(溫度)와 시비량(施肥量)에 따른 고추의 생장반응(生長反應)과 개화(開花)에 관(關)한 연구(硏究))

  • Woo, In shik;Pyon, Jong Yeong
    • Korean Journal of Agricultural Science
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 1984
  • This experiment was carried out to determine the effects of night temperature and amount of fertilization on growth and photosynthesis of red pepper plants for providing some basic imformation needed in improving the productivity of red pepper. 1. Plant height, stem length, number of flower buds, dry weight of plants and photosynthetic rate were higher in King Gun Gochu than in Dohusa, but number of leaves, number of internodes and leaf area we re higher in Dohusa compared to King Gun Gochu. 2. Plant height, number of leaves, number of flower buds, dry weight of plants, leaf area and photosynthetic rate were significantly increased by 50% increased fertilization compared to normal fertilization. 3. High night temperature($25^{\circ}C$) treatment increased plant height, stem length, number of leaves, number of internodes, number of flower buds, dry weight of plants and leaf area. 4. RGR and LAR were increased by 50% increased fertilization and high night temperature but NAR was decreased by high flower buds 5. Photosynthetic rate of King Gun Gochu was increased by 50% increased fertilization and high light intensity. 6. Number of flower buds was increased at King Gun Gochu by 50% increased fertilization and high night temperature ($25^{\circ}C$).

  • PDF

Optimum Condition of Peatmoss-Based Substrate for Growth of Red Pepper (Capsicum annuum L.) Plug Seedlings (피트모스 혼합상토를 이용한 고추 육묘용 최적 상토 개발)

  • Lee, Hyun-Haeng;Ha, Sang-Keon;Kim, Ho-Jin;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.392-399
    • /
    • 2007
  • This study was carried out to assess optimum conditions of peatmoss-based substrates for red pepper plug seedlings. Peatmoss-based substrates prepared by mixing of peatmoss with vermiculite, perlite, rice hull and zeolite at various mixing ratios were used for growing pepper plug seedlings. The physical and chemical properties of the peatmoss substrate were analyzed by the CEN(European committee for standardization) method. Fresh and dry weights (shoot, root), leaf area, root length and T/R ratio (dry shoot weight/dry root weight) were determined at 55 days after sowing. The results showed that the growing media PVSZ 6 (peatmoss:silver vermiculite: zeolite=6:3.9:0.1) and PVGZ 6 (peatmoss:gold vermiculite: zeolite=6:3.9:0.1) can successfully be used for red pepper plug seedlings judging from dry weight and T/R ratio of the plug seedlings. The optimal ranges of total pore space, water volume, air volume, easily available water content and water buffering capacity of the peatmoss based growing media for pepper plug seedlings were 87~93%, 52~71%, 20~41%, 10~37% and 0.6~10%, respectively.

Effects of Temperature and Light Intensity on the Growth of Red Pepper(Capsicum annuum L.) in Plastic House During Winter. IV. Growth Responses Influenced by Temperatures and Light Intensities in Growth Chamber (동계 plastic house내 고추(Capsicum annuum L.) 육묘시 온도와 광도가 생장에 미치는 영향 IV. 생장상내 온도 및 광환경 변화에 따른 생장반응)

  • 정순주;이범선;권용웅
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.125-130
    • /
    • 1995
  • Observations on the seedling growth of red pepper responding to different temperature(10, 20, 3$0^{\circ}C$) and light intensity(5, 15, 25 klux) were made in the growth Chamber during 7 weeks. The results obtained were as follows; 1. Best results of the combinations of temperature and light intensity were obtained from the combinated treatment of 3$0^{\circ}C$ and 25klux. At all of the temperature levels in this experiment, the more the light intensity is high, the more the growth is favor, but at low temperature below 2$0^{\circ}C$ and low light intensity below 15 klux, the growth of red pepper seedlings was decreased markedly. 2. Multiple regression polynomial equations of the characteristics of red pepper seedlings grown in the different combinations of temperature and light intensity fitted well in the plant height, number of leaves, leaf area, stem dry weight and shoot dry weight. 3. Multiple regression polynomial equation to the shoot dry weight was partial differentiated and diagrammatized the response surface using its theoretical value. Light intensity affected more to the shoot dry weight in the temperature below 2$0^{\circ}C$ but above 2$0^{\circ}C$ the role of the temperature showed greatly influence however, interaction effects of light intensity and temperature showed strongly.

  • PDF

Phenotyping of Low-Temperature Stressed Pepper Seedlings Using Infrared Thermography

  • Park, Eunsoo;Hong, Suk-Ju;Lee, Ah-Yeong;Park, Jongmin;Cho, Byoung-Kwan;Kim, Ghiseok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.163-169
    • /
    • 2017
  • Purpose: This study was performed to evaluate the feasibility of using an infrared thermography technique for phenotype analysis of pepper seedlings exposed to a low-temperature environment. Methods: We employed an active thermography technique to evaluate the thermal response of pepper seedlings exposed to low-temperature stress. The temperatures of pepper leaves grown in low-temperature conditions ($5^{\circ}C$, relative humidity [RH] 50%) for four periods (6, 12, 24, and 48 h) were measured in the experimental setting ($23^{\circ}C$, RH 70%) as soon as pepper seedling samples were taken out from the low-temperature environment. We also assessed the visible images of pepper seedling samples that were exposed to low-temperature stress to estimate appearance changes. Results: The greatest appearance change was observed for the low-temperature stressed pepper seedlings that were exposed for 12 h, and the temperature from these pepper seedling leaves was the highest among all samples. In addition, the thermal image of low-temperature stressed pepper seedlings for 6 h exhibited the lowest temperature. Conclusions: We demonstrated that the leaf withering owing to the water deficiency that occurred under low-temperature conditions could induce an increase in temperature in plant leaves using the infrared thermography technique. These results suggested that the time-resolved and averaged thermal signals or temperatures of plants could be significantly associated with the physiological or biochemical characteristics of plants exposed to low-temperature stress.

Selection and Horticultural Characteristics Evalution of High ${\alpha}-Glucosidase$ Inhibitor in Pepper (고추의 ${\alpha}-glucosidase$ 저해제 고 활성 계통 선발 및 특성 평가)

  • Cho, Myeong-Cheoul;Park, Dong-Bok;Yang, Eun-Young;Pae, Do-Ham;Won, Se-Ra;Yu, Wang-Kyun;Rhee, Hae-Ik
    • Journal of Bio-Environment Control
    • /
    • v.16 no.3
    • /
    • pp.233-239
    • /
    • 2007
  • This study was carried out to investigate the distribution of ${\alpha}-glucosidase$ inhibitor (AGI) activity and to evaluate horticultural characteristics of pepper (Capsicum spp.). AGI activities of pepper fruits and leaves were different from 1.0 to 20.5 times and 1.0 to 5.9 times, respectively. Weight, length and width of evaluated pepper fruit were distributed from 0.5 to 56.0 g, 0.8 to 15.4 cm and 0.5 to 6.3 cm per fruit respectively. Stem colors before transplanting varied from green to violet. Length and width of leaf were distributed from 3.1 to 5.0 cm and 2.1 to 3.0 cm. Immature fruit color was almost green and mature fruit color was almost red. In horticultural characteristics of selected pepper lines with high AGI activity, the fruit position was downward position. The immature fruit color was green in all lines except one and the mature fruit color was red in all lines. Fruit weight and fruit length of selected pepper lines with high AGI activity were distributed from 5.9 to 41.1 g and 5.9 to 17.0 cm and leaf width and leaf length were distributed from 5.8 to 29.7 cm and 3.9 to 8.7 cm, respectively. The AGI activities of pepper is widely variable between leaf and fruit. According to this result, it suggested the possibility of developing a new pepper line with high AGI activity.

A Study on Korean Dog Meat Cooking(II) -Survey of Dog Meat Cooking Restaurants- (견육요리(犬肉料理)의 연구(硏究) (II) -실태조사(實態調査)-)

  • Kim, Tae-Hong
    • Journal of the Korean Society of Food Culture
    • /
    • v.4 no.4
    • /
    • pp.357-368
    • /
    • 1989
  • In this study, the kinds of Dog Meat Cooking, side dishes, ingredients, seasonings and recipes were surveyed in 21 Dog Meat Cooking restaurants in Korea from July to August of 1989. 1. Actually, there were four Dog Meat Cooking recipe. Tang (soup:湯) has been served in 20 (95.2%) restaurants and Sukyuk(boiled in water:熟肉) in 19(90.5%) ones. Junkol(boiling vegetables and meat with seasoning:煎骨) and Muchim(sauteed with seasoning:무침) has been done in 16(76.2%) and 10(47.6%) restaurants, respectively. 2. According to the frequencies, the main seasonings when served were roasted perillar powder (95.2%), soybean paste (95.2%), vinegar(81.0%), Dadegi (mixed much red pepper powder, minced ginger, minced garlic, minced onion and black pepper powder, 66.7%), pepper(61.9%), salt(61.9%), salt(61.9%), minced ginger(57.1%), minced garlic(57.1%) and prepared mustard(38.1%). 3. The number of side dishes were 26. Among vegetables, green pepper(90.5%), sliced garlic(81.0%) were served. Chinese cabbage(61.9%) and Kagtuki(42.9%) out of Kimchi and leek salad(28.6%) were also served. 4. The total 17 ingredients were used in Dog Meat Cooking. The major one were white onion (100%), perillar leaf(72.2%), leek(66.6%) and parsley(47.2%).

  • PDF

Response of the Growth Characteristics and Phytochemical Contents of Pepper (Capsicum annuum L.) Seedlings with Supplemental LED Light in Glass House (LED 보광처리가 고추(Capsicum annuum) 묘의 생장과 Phytochemical 함량에 미치는 영향)

  • Azad, Md. Obyedul Kalam;Chun, Ik-Jo;Jeong, Jeong-Hak;Kwon, Soon-Tae;Hwang, Jae-Moon
    • Journal of Bio-Environment Control
    • /
    • v.20 no.3
    • /
    • pp.182-188
    • /
    • 2011
  • This research was conducted to evaluate the effect of supplemental light-emitting diode (LED) light on growth characteristics and phytochemical content of pepper (Capsicum annuum L.) seedling using LED blue (470 nm, B), red (660 nm, R), blue + red (BR), far red (740 nm, FR) and UV-B (300 nm) light treatment, and without artificial light. Photon flux of LED light was 49, 16, 40, 5.0 and $0.82{\mu}mol\;m^{-2}s^{-1}$ for B, R, BR, FR, and UV-B light, respectively, during experiment. Supplemental LED light duration was $16hr\;day^{-1}$ and UV-B light duration was 10 min. per day after sunset up to 15 days (12 days after germination) of plants age. In our research, growth characteristics and phytochemical content of pepper seedlings were greatly influenced by supplemental LED light compare to control treatment. Red light increased the number of leaves, number of nodes, leaf width and plant fresh weight by 34%, 27%, 50% and 40%, respectively. Blue light increased the leaf length by 13%, and stem length and length of inter node were increased by 17% and 34%, respectively under grown far red light. After 15 days of light treatments phytochemical concentrations of pepper plants were significantly changed. Blue light enhanced the total anthocyanin and chlorophyll concentration by 6 times and 2 times, respectively. Red light increased the total phenolic compound at least two folds meanwhile far red light reduced the ascorbic acid and antioxidant activity 31% and 66%, respectively compared to control treatment.

Action properties and insecticidal effects of thiamethoxam to the melon aphid, Aphis gossypii, and diamondback moth, Plutella xylostella (목화진딧물과 배추좀나방에 대한 thiamethoxam의 살충효과 및 작용특성)

  • Jang, Cheol;Hwang, In-Cheon;Yu, Yong-Man;Choe, Kwang-Ryul
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.126-136
    • /
    • 1998
  • For the purpose of effective control strategy of the melon aphid, Aphis gossypii and the diamondback moth, Plutella xylostella, thiamethoxam and 3 other insecticides in different classes were used with bioassay test methods in laboratory and greenhouse. They were examined to evaluated and compared with contact toxicity, stomach toxicity, rapid action, systemic action, and residual effect of imidacloprid, thiamethoxam (nicotinoids), acephate (organophosphorates), and carbosulfan (carbamates). As results of contact toxicity responses of A. gassypii against 4 insecticides using a spray application method, $LC_{50}$ values of acephate, carbosulfan, imidacloprid and thiamethoxam were 41.9, 5.2, 1.1, and 0.7 ppm. respectively. In the evaluation of stomach toxicity response of P. xylostella using a leaf-dipping method, with the 2nd instar larva $LC_{50}$ values of imidacloprid, thiamethoxam and acetamiprid were 64.9, 24.6 and 15.2 ppm, with the 3rd instar larva were 125.2, 42.7 and 27.8 ppm. and with the 4th instar larva were 241.1, 44.5 and 23.9 ppm, respectively. In the case of rapid action to A. gossypii using a spray application method after inoculation, $LT_{50}$ values of imidacloprid, thiamethoxam, carbosulfan, and acephate were 26.6, 28.0, 30.3, and 41.7 min. respectively. Otherwise, in the inoculation after applying compounds, $LT_{50}$ values of thiamethoxam, imidacloprid, and carbosulfan were 95.5, 118.0, and 122.9 min. respectively. Evaluating to systemic action from the abaxial surface to the adaxial surface of red pepper leaf with spray method, $LT_{50}$ values of thiamethoxam, imidacloprid, and carbosulfan were 162.2, 168.9, and 564.1 min. respectively. For the systemic action from the lower leaves to the upper leaves on red pepper, $LT_{50}$ values of carbosulfan, thiamethoxam, imidacloprid, and acephate were 2.3, 2.9, 3.0, and 8.8 days, respectively. In red pepper plant, $LT_{50}$ values of carbosulfan, imidacloprid, thiamethoxam, and acephate on the systemic action from the roots to the upper leaf were 0.6, 1.0, 1.0, and 13.8 days, respectively. As these results, it might be that thiamethoxam was excellent on systemic effect in red pepper. For the evaluation of residual effect on red pepper with A. gossypii, thiamethoxam and imidacloprid maintained high control effects as over 80% upto 10 days after treating compounds.

  • PDF

Bioactivity of the Extract of Coptis chinensis: In-vitro Antifungal Activity against Phytophthora capsici and Growth-promotion Effect in Red-pepper (황련 추출물의 고추역병에 대한 In-vitro 항진균 활성 및 고추 생육촉진 효과)

  • Ahn, Seon-Mi;Lee, Dong-Sin;Kim, Mi-Sun;Choi, Su-Ji;Choi, Chung-Sik;Lee, Jung-Bok;Jang, Han-Su;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.280-286
    • /
    • 2009
  • To investigate anti-phytopathogenic fungal activity of Coptis chinensis, the methanol extract and its organic solvent fractions were prepared. Using the extract and the fractions, in-vitro spore-germination inhibition and mycelial-growth inhibition activities were evaluated against Colletotrichum gloeosporioides, Phytohpthora capsici, Pyricularia grisea, Rhizoctonia solani, Botryosphaeri dothidea, Glomerella cingulata, respectively. Treatment of the methanol extract (500 mg/mL) into the spore of phytopathogenic fungi completely inhibited germinations for 5 days, except B. dothidea, and showed strong antifungal activities against P. grisea and B. cinerea, and antioomycetes activity against P. capsici. The minimal growth inhibition concentrations of the methanol extract against P. grisea, B. cinerea and P. capsici were 300, 300, and 500 mg/mL, respectively. For practical application of C. chinensis in red-pepper field, the hot-water extract (1,000 mg/mL) was prepared in commercial facility, after evaluation of heat stability and solvent-extraction yields of antifungal substances. The 3-times leaf-spray of the extract from June to August, 2008 did not show any deleterious effect to red-pepper. In fact, the leaf-spray promoted plant growth including leaf, root and fruit. The average weight and rind of each fruit were increased to 119% and 117% comparison to those of without treatments. Our results suggest that C. chinensis is a useful source for control of red-pepper diseases and plant growth.