• Title/Summary/Keyword: red earth soils

Search Result 17, Processing Time 0.025 seconds

Effects of Microbial Iron Reduction and Oxidation on the Immobilization and Mobilization of Copper in Synthesized Fe(III) Minerals and Fe-Rich Soils

  • Hu, Chaohua;Zhang, Youchi;Zhang, Lei;Luo, Wensui
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.4
    • /
    • pp.534-544
    • /
    • 2014
  • The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, $SO_4{^{2-}}$ in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cu-contaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

Effect of soil-ameliorator mixtures on nutrient leaching in sandy paddy soil (사질답토양(砂質畓土壤)에 수종(數種) 개량제(改良劑) 시용(施用)이 양분용탈(養分溶脫)에 미치는 영향(影響))

  • Ahn, Sang-Bae;Park, Jun-Kyu;Yeon, Beong-Yeal;Yuk, Chang-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.20 no.2
    • /
    • pp.131-138
    • /
    • 1987
  • Experimental informations on the possible alternative resources of soil addition in sandy paddy soils were obtained by applying fertilizer N, P, and K to the top of 26 cm long columns containing the soil-ameliorator mixture and by determining the concentration and leaching loss of nutrients in percolated water and permeability. 1. Addition of red earth and compost to soils decreased pronouncedly the permeability. Relative magnitude of permeability was compost+slag+red earth > compost+red earth > compost > red earth > compost+slag > slag > non-added soil. 2. Concentration and leaching loss of $NH_4-N$ and $SiO_2$ were high by addition of compost-slag or red earth mixture to soils. The present of these nutrients in soils after experiment was, also, higher than that in non-added soil and in red earth to soils. 3. Those of K, Ca, and Mg were similar to $NH_4-N$ and $SiO_2$. Especially, leaching loss and present of K in soils by addition of compost to soils were higher dramatically than those of non-added soil and of red earth to soils. 4. Those of $Fe^{{+}{+}}$ in non-added soil were much higher than those by addition of compost and slag to soils. These values were the highest in 12 days after submergence, while these of $Mn^{{+}{+}}$ the lowest. 5. Concentration of $NH_4-N$ was high by addition of compost to soils, while the present of it in soils after experiment was tended to be contrary.

  • PDF

Paleo-red Soil on the High Fluvial Surface in the Middle Basin of Nam-Han River (남한강 중류 하성고위면의 고적색토)

  • Kang, Young-Pork;Lee, Sang-Min
    • Journal of the Korean earth science society
    • /
    • v.26 no.8
    • /
    • pp.828-835
    • /
    • 2005
  • The purpose of this study is to clarify the landform development of fluvial terrace and the soil characteristics occurring on the terrace deposit. In order to achieve the purpose, the characteristics of soil profiles, the physic-chemical properties of soils that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated. The horizon of Al in the high fluvial surface is silt clay loam of red (2YR 4/6). The soil structure is a developed granular structure. The horizon of B1 is silt clay reddish-brown (2.5YR 4/6). The soil structure is a medium subangular blocky structure. This red soil structure is made on heavy textured and compactly packed parent materials of high terrace sediments and usually has A-B-C profile. In most cases, clay accumulations in B-horizon and clay cutans on ped surfaces are observed, which mean the formation of agrillic horizon. As the result of this study, soils derived from fluvial terrace deposits on high fluvial surfaces are considered paleo-red soil which were developed by pedogenese-strong desilicification and rubefaction and strong leaching of bases- under warmer bio-climatic condition during in the old Pleistocene period.

Soil Characteristics on the Fluvial Surface in the Basin of Kyeongan-cheon (Stream) (경안천 유역 하성면에 발달한 토양 특성)

  • Kang, Young-Pork;Sin, Kwang-Sig
    • Journal of the Korean earth science society
    • /
    • v.27 no.5
    • /
    • pp.548-556
    • /
    • 2006
  • The purpose of this study is to clarify the relict landform development of fluvial terrace and the soil characteristics occurring on the fluvial deposits. The physico-chemical properties of soil that are developed on terrace deposits and X-ray diffraction analysis of clay were investigated specifically. The horizon of $A_1$ consists of silt loam with reddish-brown color (5YR4/3). Its soil structures is a weak, fine, subangular, and blocky, breaking to granular. The horizon of $B_{1t}\;and\;B_{2t}$ are silt clay with either a yellowish red (5YR5/6), bright red (2.5YR4/6) color. This soil structure is weak, subangular, and blocky, with thin discontinuous bright red (2.5YR4/6) clay cutans and soft manganese concretions. This red soil structure is made on heavy-textures. It is packed compactly with parent materials of high fluvial surface sediments, and usually has a $A_1-B_{1t}-B_{2t}-C$ profile, from top to bottom. In most cases, clay accumulation in the B-horizon and clay cutans on ped surfaces are observed, which means the argillic horizon has formed. The soils derived from fluvial surface deposits are associated with soils. The soils on the high fluvial surface are considered to be a kind of paleo-red soil which were developed by strong desilicification and rubefaction, and strong leaching of bases under warmer bio-climatic condition during the old Pleistocene period. According to these morphological and anlaytical characteristics,geomorphological features and bio-climatic conditions under which the soil have developed on the high terrace sediment indicate that the soil should be classified as paleo-red soils.

Effects of Sand Mulching on Forage Production in Newly Reclaimed Tidal Lands I. Desalination of the soils and crop perfomanc (간척지 사료작물 재배에 있어서 모래를 이용한 토양 mulching의 효과 I. 제염효과와 작물생육)

  • 김정갑;한민수;이상범;한흥전
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.8 no.1
    • /
    • pp.55-60
    • /
    • 1988
  • A two year's field experiment was conducted on newly reclaimed saline tidal lands to measure the effects of sand mulching on salinity of the soils and their relationship to crop performance. Hybrid sorghum cv. Pioneer 931 was grown under different mulching treatments using of medium sand and red earth (Fine loamy, Typic Hapludults). Salinity in the root zone was decreased markedly under soil mulching using of medium sand, especially during the dry season, and it caused a great increase in the root growth and R/T ratio. Seasonal values of electrical conductivity at sand mulching were 6.6 in April and 1.6 mmhos in August, but it was still high with a concentration of 12.7 (April) and 3.8 mmhos (August) in untreated check plot. Sand mulching increased plant growth and the rate of dry matter accumulation. However, treatment of red earth additionally over sand mulching produced lower dry matter yield than those of soil mulching using of medium sand only. Under salt stress sorghum plant showed a decrease in the leaf weight ratio (LWR) and it resulted in a low concentration of crude protein of the plant. Sand mulching enhanced leaf weight ratio and rate of protein synthesis.

  • PDF

The effect of soil amendments on rice yield in sandy soils (사질답(砂質沓)에 있어서 개량제 시용(施用)이 수도증수에 미치는 영향(影響))

  • Lim, J.H.;Park, K.B.;Lee, I.H.;Jung, Y.T.;Park, R.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.12 no.2
    • /
    • pp.83-89
    • /
    • 1979
  • To improve the physico-chemical properties of sandy alluvial soils for paddy rice, several soil amendments such as wollastonite, dolomite adding red earth and compost were applied compositely. The results are summarized as follows. 1. The application of soil amendments caused an increase of calcium, magnesium and silica contents in the soils, and it was also possible to maintain a high pH during the cropping season. 2. Among the mineral elements in the plant, calcium and silica content were increased by the treatment of adding red earth, dolomite and wollastonite. 3. By the application of wallastonite and dolomite, the phosphorous content in the plant decreased in comparison with no-amendment treatment, and the potash in the plant also decreased after the ear formation stage of the rice. 4. The most desirable treatment (adding red earth+dolomite+extra N) resulted in 19% increase of rice yield, while the composite of wollastonite and compost brought 10% yield increase. The high ripeding ratio was the factor which influenced the yield favorably.

  • PDF

Development of soil media for raising rice seedlings in trays (수도상자육묘용(水稻箱子育苗用) 상토자재개발(床土資材開發))

  • Shin, Jae-Sung;Choi, Du-Hoi;Seong, Ki-Seok;Kim, Bok-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.301-305
    • /
    • 1986
  • This study was conducted to develop the homemade soil media adequate to raising rice seedlings for machine transplanting. A raising experiment of rice seedlings was tested on a newly developed soil medium made mainly from briquette ash compared to ones of infertile red earth and fertile paddy loams. Dry weight of rice seedlings at 36 days after seeding was slighly lower in the plot of briquette ash that in soils, however, it was quite good in the plot of briquette ash mixed with zeolite and diatomaceous earth. pH in soil media was high in briquette ash and also high in soils mixed compost compared with out compost treatment, resulting in higher occurrence of damping off or physiological disorder. Good rice seedlings could be raised in soil media without compost and briquette ash mixed with zeolite diatomaceous earth.

  • PDF

Environmental contamination and geochemical behaviour of heavy metals around the abandoned Songcheon Au-Ag mine, Korea

  • Lim Hye-sook;Lee Jin-Soo;Chon Hyo-Teak;Sager Manfred
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.544-547
    • /
    • 2003
  • The objective of this study is to investigate the contamination levels and dispersion patterns of arsenic and heavy metals and to estimate the bioaccessible fraction of the metals in soil and plant samples in the vicinity of the abandoned Songcheon Au-Ag mine. Tailings, soils, plants (Chinese cabbage, red pepper, soybean, radish, sesame leaves, green onion, lettuce, potato leaves, angelica and groundsel) and waters were collected around the mine site. After appropriate preparation, all samples were analyzed for As, Cd, Cu, Pb and Zn by ICP-AES and ICP-MS. Elevated levels of As and heavy metals were found in tailings. Mean concentrations of As in agricultural soils were higher than the permissible level. Especially, maximum level of As in farmland soil was 513 mg/kg. The highest concentrations of As and Zn were found in Chinese cabbage (6.7 mg/kg and 359 mg/kg, respectively). Concentrations of As, Cd, and Zn in most stream waters which are used for drinking water around this mine area were higher than the permissible levels regulated in Korea. Maximum levels of As, Cd and Zn in stream waters were 0.78 mg/L, 0.19 mg/L and 5.4 mg/L, respectively. These results indicate that mine tailings can be the main contamination sources of As and heavy metals in the soil-water system in the mine area. The average of estimated bioaccessible fraction of As in farmland soils were $3.7\%$ (in simulated stomach) and $10.8\%$ (in simulated small intestine). The highest value of bioaccessible fraction of metal in farmland soils was $46.5\%$ for Cd.

  • PDF

Pedological and Mineralogical Characterizations of Hwangto (Yellow Residual Soils), Naju, Jeollanam-do, Korea (전라남도 나주시 동강면 일대 황토(풍화잔류토)의 토양학적 및 광물학적 특성 연구)

  • Kim, Yumi;Bae, Jo-Ri;Kim, Cheong-Bin;Roh, Yul
    • Economic and Environmental Geology
    • /
    • v.47 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • The objectives of this study were to characterize the physicochemical properties and mineralogy of Hwangto (yellow residual soils) from the southwestern part of Korea and to understand the soil-forming processes of the residual soils from their parent rocks. Both the yellowish residual soils as well as the unweathered and weathered parent rocks were obtained from Jangdong-ri, Donggang-myun, Naju, Jeollanam-do, Korea. The soil samples were examined to analyze the said soil's physicochemical properties such as color, pH, and particle size distribution. A scanning electron microscopy (SEM) with energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were performed in order to understand the mineralogy, chemical composition, and morphology of the soils. Two thin sections of a parent rock were analyzed to study its mineral composition. A particle size analysis of the soils indicates that the residual soil consists of mainly silt and clay (approximately 95%) and that soil textures are silty clay or silt clay loam. The soil colors of the residual soil are dark brown (7.5YR 3/4) through yellowish red (5YR 4/6). The pH of the residual soil ranges from 4.3 to 5.1. The major minerals of the parent rocks were quartz, biotite, chlorite, and plagioclase. The mineralogy of the sand fraction of the residual soil was quartz, biotite, muscovite and sanidine. The mineralogy of the silt fraction of the residual soil was quartz, biotite, muscovite, Na-feldspar, K-feldspar, and sanidine. The clay mineralogy of the soil was goethite, kaolinite, ilite, hydroxy-interlayed vermiculite(HIV), vermiculite, mica, K-feldspar and quartz. The mineral composition of the residual soil and the parent rock indicates that feldspar and mica in the parent rock weathered into illite, vermiculite and hydroxy-interlayed vermiculite(HIV), and finally changed into kaolinite and halloysite in the yellowish residual soils.

Studies on the Interpretative Classification of Paddy Soils in Korea I : A Study on the Classification of Sandy Paddy Soils (우리나라 답토양(畓土壌)의 실용적분류(実用的分類)에 관(関)한 연구(硏究) -제1보(第一報) 사질답(砂質畓) 분류(分類)에 관(関)하여)

  • Jung, Yeun-Tae;Yang, Euy-Seog;Park, Rae-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.128-140
    • /
    • 1982
  • The distribution and practical classification of sandy paddy soils, which have the most extensive acreage among low productive paddy soils in Korea and have distinctive improvement effects, were studied to propose a tentative new classification system of sandy textured paddy soils as a means of improving the "Paddy Soil Type Classification" scheme used. The results are summarized as follows; 1. The potential productivity of sandy textured paddy soils was about 86% of normal paddy and the coefficient of variation was relatively high indicating that the properties of soils included were not sufficiently homogeneous. 2. As the poorly drained and halomorphic (> 16 mmhos/cm of E.C. at $25^{\circ}C$) sandy soils are not included in the "Sandy Soil" type according to the criteria of "Soil Type Classification", the recommendation of "adding clay earth" become complicated, and the soil type have to change when the salts washed away or due to ground water table fluctuations. 3. Coarse textured soils were entirely included in the "Sandy Soils" in the tentative criteria of sandy soil classification proposed, and the sandy soils were subdivided into 4 subtypes that is "Oxidized leaching sandy paddy", Red-ox. intergrading sandy paddy", "Reduced accumulating sandy paddy" and "Reduced halomorphic sandy paddy". The system of sandy soil classification proposed were consisted of following categories; Type (Sandy paddy)-Sub-type (4)-Texture family (5)-Soil series (48). 4. The variation of productivities according to the proposed scheme was more homogenized than that of the present device. 5. The total extent of sandy paddy soils was 409, 902 ha (32.3% of total paddy) according to the present classification system, but the extent reached 492,983 ha (38.9%) by the proposed system. The provinces of Gyeong-gi (88.923ha), Jeon-bug (69.717 ha), Gyeong-bug (55.390 ha) have extensive acreage of sandy paddy soils, and the provinces that had high ratio of sandy paddy soils were Gang-weon (58.9%), Gyeong-gi (50.5%), Chung-bug (48.5%), Jeon-bug (41.0%) etc. The ratio was increased by the proposed scheme, e.g. 71.4% in the case of Gang-weon prov. 6. According to the suitability group of paddy soils, the sandy soils mostly belong to 3 class (69.1%) and 4 class (29.2%). Coarse loamy textural family (59.2%) and coarse silty (16.1 %) soils were dominantly distributed. 7. The "Red-ox. intergrading subtype" of sandy paddy pertinent to 49.6% (245,012 ha) while the "Oxidized leaching sub-type" reaches to 33.5% (64,890 ha) and the remained 16.9% (83,081ha) belong to "Reduced accumulating sub-type (14.0%) and "Reduced halomorphic sub-type (2.9%)" according to the proposed scheme.

  • PDF