• Title/Summary/Keyword: recycling waste glass

Search Result 114, Processing Time 0.022 seconds

The Performance and Evaluation for Recycling of Waste Glass

  • Chang, Tein-Chin;Huang, Jian-Er;Yen, Jia-Huei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.80-83
    • /
    • 2001
  • According to the EPA in Taiwan report, 9.05 million metric tons of solid wastes were generated in 1999, and the waste glass was accounted of 4.95 percent. However, with the increasing tonnage of disposal cost and existing disposal sites are reaching full capacity, recycling is currently accepted as a sustainable approach to waste management. Therefore, it's essential and urgent that the government in Taiwan establish the recycling and recovery framework for the minimization of the solid waste, reduction of materials and energy consumption, and the encouragement for the reuse, recycle and recovery development. To achieve this Boal, Taiwan has been strived for a long period of time in waste glass recovery and recycle. Waste glass, unlike other kinds of resource waste, is 100% recyclable. The EPA in Taiwan now center on a lot of different kinds of waste glass, such as glass container, flat glass, CRT glass, windshields glass, fluorescent lamps, and waste pesticide glass container. This article will focus on the framework of the recycling market access, and also try to provide some strategies to improve waste glass recycling efficiently.

  • PDF

The Characteristics of P.H.C Pile using Admixture by Waste TFT-LCD Glass Powder (폐 TFT-LCD 유리분말을 혼입한 고강도 콘크리트 파일의 특성)

  • Jeon, Seong-Hwan;Min, Kyung-San;Soh, Yang-Seob
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.5
    • /
    • pp.419-425
    • /
    • 2010
  • In order to examine the P.H.C pile raw material using glass forming ceramic. The used materials is ordinary portland cement, waste TFT-LCD glass powder and reactive agent(Ca$(OH)_2$). The first experiment is characteristics analysis of the waste TFT-LCD glass powder, For the second experiment is mortar and concrete compressive strength for using of the concrete file raw material for waste TFT-LCD glass powder. The results of experiment showed that the substitution ratio of 10% waste TFT-LCD glass powder and 1% reactive agent(Ca$(OH)_2$) was excellent at a point of view for the physical characteristic. The study's most important finding is that the recycling of waste TFT-LCD glass powder.

Foaming Process of Waste LCD Glass for the Recovery of Valuable Materials from Waste LCD Pannel (폐 LCD판넬의 유가성분 회수를 위한 폐 LCD유리의 발포공정)

  • Lee, Chul-Tae;Park, Tae-Moon;Kim, Jung-Min
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.195-203
    • /
    • 2012
  • Recycling method of waste LCD glass is the essential process for developing the total recycling process of LCD pannel. Pulverizing of LCD glass, determination of proper carbonacious foaming agent, the properties of residue from the recovery of valuable materials through an acid leaching process and the feasibility for the foaming of the residue obtained from leaching for indium and tin recovery were investigated for the developing of recycling method of waste LCD glass as industrial feed materials, such as heat insulation materials, sound absorbing materials, carrier of water treatment. Waste LCD glass could be pulverized finely for foaming process. Natural graphite was proper agent for foaming of the residue and the foaming technology of LCD glass would be effective recycling alternatives.

Current Research Trend on Recycling of Waste Flat Panel Display Panel Glass (폐 평판디스플레이 패널유리의 재활용 연구 동향)

  • Shin, Dongyoon;Kang, Leeseung;Park, Jae Layng;Lee, Chan Gi;Yoon, Jin-Ho;Hong, Hyun Seon
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.58-65
    • /
    • 2015
  • Although Korea is a top market sharing and world leading producer and developer of flat panel display devices, relevant recycling technology is not up to her prestigious status. Besides, most of the waste glass arising from flat panel displays is currently land-filled. The present paper mainly reviews on development of recycling systems for waste TFT-LCD glass from end-of-life LCD TVs and monitors and TFT-LCD process waste of crushed glass particles with target end uses of raw material for high strength concrete pile and glass fibers, respectively. Waste LCD glass was recycled to fabricate ingredients for high strength concrete piles with enhanced physical properties and spherical foam products. The waste LCD glass recycling technology is already developed to fabricate long and short fibers at commercial level. In view of these, future R & D on waste LCD glass materials is to be directed toward implementation of commercial materials recycling system therefrom.

Dissolution Technology Development of E-Glass Fiber for Recycling Waste of Glass Fiber Reinforced Polymer

  • Lee, Suyeon;Kim, Woo Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.6
    • /
    • pp.577-582
    • /
    • 2019
  • Recently, E-glass fiber is the one of most widely used ceramic fiber for aerospace fields. Recycling technology for waste of wind power blades is arising issue for reasons of low manageability and high cost of wastes. Though glass fiber is perfectly dissolved in hydrofluoric acid, low cost for recycling and harmless to human is important for recycling of blades. Chemically melted glass fiber will be used as different purpose like accelerator of hardening for shotcrete. In this study, dissolution process of glass fiber is tested in NaOH solution at low temperatures. In addition, difference in diameter reduction of glass fiber is observed by various alkali concentration and reaction times, treatment temperatures using FE-SEM.

Acid Resistance of Unsaturated Polyester Mortar Using Crushed Wate Glass (폐유리를 골재로 사용한 불포화폴리에스테르 모르타르의 내산성에 관한 연구)

  • 한창호;최길섭;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.339-342
    • /
    • 2000
  • Recently, the importance of the conutermeasures for waste materials has pointed out. Waste glass is also one to waste materials used for the recycling in construction sites. The crushed waste glass has been used to make a glass polymer composite that can be applied for sewer, storm drain pipe and interlocking block, etc. In this study, the crushed waste glass is explored with the possibility of recycling it, as a substitute for fine aggregates. The prepose of this investigation is to improve the strengths and acid resistance of the UP mortars using crushed waste glass. The UP mortars are prepare with blast furnace slag fly ash filler. the UP-fine aggregate ratios the crushed waste glass replacements for fine aggregate are tested strengths before and after immersion(H (아래첨자2)SO(아래첨자4) 10%), weight change and acid resistance are also tested. From the test results, the relative strength or UP mortars using fly ash as filler are found to be somewhat superior to that of the UP mortars using blast furnace as filler, And a UP mortar with fly ash as a filler, a UP-fine aggregate ratio of 15% and a waste glass replacement if 50% for fine aggregate is recommended as optimal mix proportion of UP mortar using crushed waste glass. Accordingly, it is enough to assure the use of the crushed waare glass as an aggregate for the production of UP mortar.

  • PDF

Physical Characteristics of Cement Mortar Prepared Using Waste Glass and Graphene Oxide (폐유리와 산화 그래핀을 사용한 시멘트 모르타르의 물성 연구)

  • Kim, Kyoungseok;Chu, Yongsik
    • Resources Recycling
    • /
    • v.28 no.6
    • /
    • pp.54-63
    • /
    • 2019
  • This study investigated on the compressive strength and the length change test with using the waste glass and graphene oxide for recycling the waste glass as the aggregate. Curing on 3-day and 7-day, the compressive strength was enhanced as the usage of waste glass was increased. Especially, the huge difference in the compressive strength was observed when the amount of substituting on the waste glass was used on 10~50%. With 50% of waste glass condition, the compressive strength was portionally enhanced as the usage of graphene oxide was increased and its value was 42.6 N/㎟ with 0.2% of graphene oxide. In terms of the length change test, the use of high content of waste glass led length change value to increase, but it was dropped down as the portion of waste glass was above 50%. Furthermore, in the case of using 50% of waste glass, the use of high amount of graphene oxide tended to decrease the length change value. That is, graphene oxide may contribute on boosting the cement hydration reaction and blocking the ion's movement.

Performance Evaluation of Admixture for Durability Improvement of Shielding Materials Used Waste Glass as Fine Aggregate (폐유리를 잔골재로 사용한 차폐채움재의 내구성 개선을 위한 혼화재료의 성능평가)

  • Hwang, Byoung-Il;Kim, Hyo-Jung;Song, Yong-Soon;Yi, Seong-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.20-27
    • /
    • 2019
  • Compared to the development and manufacturing technology of electronic goods, the development of waste glass recycling technology is relatively insufficient, leading to the acceleration of waste of resources and environmental pollution. Although waste glass recycling technology is being actively developed overseas, waste glass recycling technology is insufficient in Korea, leading to the illegal dumping or burial of waste glass. Waste glass has been confirmed to have pozzolan reaction potential when having hydration reaction with cement. Waste glass is also reported to be effective in reducing bleeding and inhibiting the development of hydration heat by improving the physical properties of concrete and the rheology properties of fresh concrete. Therefore, this paper analyzed the strength characteristics and the effect of alkalic-silica reaction on the expansion of shielding concrete that used waste glass as fine aggregate. Where, suitable admixture materials were used as a measure to suppress the expansion.

Overview and Recycling of Waste Automobile Glass (폐자동차 유리의 재활용 현황)

  • Yoon, Jin-Ho;Hong, Myung Hwan;Park, Kyung-Soo;Park, Jae Layng;Lee, Chan Gi
    • Resources Recycling
    • /
    • v.24 no.1
    • /
    • pp.51-57
    • /
    • 2015
  • The glass has been used continuously since ancient period up to the present day. The smart glass industry in which the advanced technology is added is developing. The life cycle of the smart glass is faster than traditional glass. Therefore, the basic and core technology development is needed for recycling of smart glass according to the replace period. Among the smart glass the recycling development of the automobile industry is the most needed areas. At the end of life of the automobile, the amount of the smart glass is expected to be over 23,000 tons per year. In this paper, the current status of domestic Korean automobile glass has been comprehensively investigated. Finally, Korean domestic smart glass recycling technology is also briefly introduced.

Properties of Wollastonite-Reinforced Glass-Ceramics Made from Waste Automobile Glass and Waste Shell

  • Yun, Yeon-Hum;Yoon, Chung-Han;Kim, Chi-Kyun;Hwang, Kyu-Seog
    • Resources Recycling
    • /
    • v.13 no.1
    • /
    • pp.54-58
    • /
    • 2004
  • Wollastonite-type glass ceramics were prepared by milling and firing at various temperatures using an automobile waste glass and waste shell as starting materials. Powder mixture ground by disk-type ball mill for 3 hours was pressed into a disk. The pressed specimen was fired at $850^{\circ}C$,$950^{\circ}C$ and $1050^{\circ}C$ for 1 hour in air. From FE-SEM observation, with an increase of the firing temperature from $850^{\circ}C$ to $1050^{\circ}C$, whisker-type phase was grown to about 10 $\mu\textrm{m}$ in length. Specimen fired at $1050^{\circ}C$ showed the formation of well-crystallized whisker-type wollastonite grains and the highest compressive strength.